开发者

Python+Yolov5人脸口罩识别的详细步骤

目录
  • 前言
  • 一、所需工具软件           
  • 二、使用步骤
    • 1.引入库
    • 2.识别图像特征
    • 3.识别参数定义:
    • 4.运行结果如下: 
  • 总结

    前言

    Yolov5比较Yolov4,Yolov3等其他识别框架,速度快,代码结构简单,识别效率高,对硬件要求比较低。这篇博客针对python+Yolov5人脸口罩识别编写代码,代码整洁,规则,易读。 学习与应用推荐首选。

    一、所需工具软件           

    1. Python3.6以上           

    2. Pycharm代码编辑器          

    3. Torch, OpenCV库

    二、使用步骤

    1.引入库

    代码如下(示例):

    import cv2
    import torch
    from numpy import random
     
    from models.experimental import attempt_load
    from utils.datasets import LoadStreams, LoadImages
    from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
        scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
    from utils.plots import plot_one_box
    from utils.torch_utils import select_device, load_classifier, time_synchronized

    2.识别图像特征

    代码如下(示例):

    def detect(save_img=False):
        source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
        webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://'))
     
        # Directories
        save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
     
        # Initial编程ize
        set_loggi编程客栈ng()
        device = select_device(opt.device)
        half = device.type != 'cpu'  # half precision only supported on CUDA
     
        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        stride = int(model.stride.max())  # model stride
        imgsz = check_img_size(imgsz, s=stride) 开发者_开发学习 # check img_size
        if half:
            model.half()  # to FP16
     
        # Second-stage classifier
        classify = False
        if classify:
            modelc = load_classifier(name='resnet101', n=2)  # initialize
            modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
     
        # Set Dataloader
        vid_path, vid_writer = None, None
        if webcam:
            view_img = check_imshow()
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz, stride=stride)
        else:
            save_img = True
            dataset = LoadImages(source, img_size=imgsz, stride=stride)
     
        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names
        colors = [[random.randint(0, 255) for _ in range(3编程客栈)] for _ in names]
     
        # Run inference
        if device.type != 'cpu':
            model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
        t0 = time.time()
        for path, img, im0s, vid_cap in dataset:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
     
            # Inference
            t1 = time_synchronized()
            pred = model(img, augment=opt.augment)[0]
     
            # Apply NMS
            pred = non_max_suppression(ppythonred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
            t2 = time_synchronized()
     
            # Apply Classifier
            if classify:
                pred = apply_classifier(pred, modelc, img, im0s)
     
            # Process detections
            for i, det in enumerate(pred):  # detections per image
                if webcam:  # BATch_size >= 1
                    p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
                else:
                    p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
     
                p = Path(p)  # to Path
                save_path = str(save_dir / p.name)  # img.jpg
                txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
                s += '%gx%g ' % img.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
     
     
                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        if save_txt:  # Write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                            with open(txt_path + '.txt', 'a') as f:
                                f.write(('%g ' * len(line)).rstrip() % line + '\n')
     
                        if save_img or view_img:  # Add bbox to image
                            label = f'{names[int(cls)]} {conf:.2f}'
                            plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
     
                # Print time (inference + NMS)
                print(f'{s}Done. ({t2 - t1:.3f}s)')
     
     
                # Save results (image with detections)
                if save_img:
                    if dataset.mode == 'image':
                        cv2.imwrite(save_path, im0)
                    else:  # 'video'
                        if vid_path != save_path:  # new video
                            vid_path = save_path
                            if isinstance(vid_writer, cv2.VideoWriter):
                    编程            vid_writer.release()  # release previous video writer
     
                            fourcc = 'mp4v'  # output video codec
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                            vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                        vid_writer.write(im0)
     
        if save_txt or save_img:
            s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
            print(f"Results saved to {save_dir}{s}")
     
        print(f'Done. ({time.time() - t0:.3f}s)')
        
        print(opt)
        check_requirements()
     
        with torch.no_grad():
            if opt.update:  # update all models (to fix SourceChangeWarning)
                for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                    detect()
                    strip_optimizer(opt.weights)
            else:
                detect()

    该处使用的url网络请求的数据。

    3.识别参数定义:

    代码如下(示例):

    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--weights', nargs='+', type=str, default='yolov5_best_road_crack_recog.pt', help='model.pt path(s)')
        parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
        parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
        parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
        parser.add_argument('--view-img', action='store_true', help='display results')
        parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
        parser.add_argument('--classes', nargs='+', type=int, default='0', help='filter by class: --class 0, or --class 0 2 3')
        parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
        parser.add_argument('--augment', action='store_true', help='augmented inference')
        parser.add_argument('--update', action='store_true', help='update all models')
        parser.add_argument('--project', default='runs/detect', help='save results to project/name')
        parser.add_argument('--name', default='exp', help='save results to project/name')
        parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
        opt = parser.parse_args()
        
        print(opt)
        check_requirements()
     
        with torch.no_grad():
            if opt.update:  # update all models (to fix SourceChangeWarning)
                for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                    detect()
                    strip_optimizer(opt.weights)
            else:
                detect()

    4.运行结果如下: 

    Python+Yolov5人脸口罩识别的详细步骤

    总结

    到此这篇关于Python+Yolov5人脸口罩识别的文章就介绍到这了,更多相关Python Yolov5人脸口罩识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

    0

    上一篇:

    下一篇:

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    最新开发

    开发排行榜