解读python cvxpy下SDP问题编程
目录
- python cvxpy下SDP问题编程
- 算法如下
- 附上代码
- 总结
python cvxpy下SDP问题编程
最近在做定位算法的复现问题,遇到了
Source Localization in Wireless Sensor Networks From Signal Time-of-Arrival Measurements
里面的一个半正定优化算法,因此选用cvxppythony库实现。
官方文档[cvxpy]的例程复现的算法都很简单,因此对该问题的借鉴意义不大。
算法如下
对我而言,首先的难度就是拼接矩阵后的半正定约束条件,起初是另设立两个矩阵变量,然后按部就班的增加限制条件。但最后求得的数据千奇百怪,与预测位置没有任何关系。后来不js断尝试更改约束限制的表达形式,但均无效果。
后来输出了每个变量的值查看,发现Q元素的物理意义为预测距离的平方,但是求出来的Q矩阵元素往往极大,因此擅自添加了一个约束条件,限制Q的最大元素在预测距离平方的量级上,完美解决问题。
附上代码
class Program_t: def __init__(self,bt): self.BT = bt self.BT_x = [b[0] for b in self.BT] self.BT_y 编程客栈= [b[1] for b in self.BT] self.T=[b[2] for b in self.BT] self.number = len(bt) def LS_steps(self): num = len(self.T) up_control = 2*max(self.T)**2#限制最大元素量级 Q = cp.Variable((num,num))#待求变量 tao = cp.Variable((num,1))#生成矩阵形式后面才可以拼接 y_ = cp.Variable((2,1)) y_s = cp.Variable((1,1))#矩阵形式用于拼接 yita = 0.000005*sum(self.T) / num#论文编程客栈给出的参数选择,可更改常数 G = np.eye(num)-np.ones((num,num)) t = np.array([self.T]).T expr1 = cp.trace((cp.transpose(G)) @ G @ (Q- cp.multiply(2,t @ (cp.transpose(tao)))+t @ (cp.transpose(t)))) expr2 = yita*cp.sum(Q) exppythonr = expr1+ exp开发者_Python开发r2#目标函数 Q_ = cp.bmat([[Q,tao],[cp.transpose(tao),[[1]]]])#拼接矩阵 Y = cp.bmat([[np.eye(2),y_],[cp.transpose(y_),y_s]])#拼接矩阵 constraints = [Q_ >> 0, Y >> 0, cp.max(Q)<=up_control]#限制条件Q半正定,Y半正定,Q最大元素小于上限(这个约束非常重要,是我自己加上去的) for i in range(num): X = np.array([self.BT_x[i],self.BT_y[i],-1]).T constraints += [Q[i, i] == cp.transpose(X) @ Y @ X]#约束条件 for j in range(i+1,num): X_j = np.array([self.BT_x[j], self.BT_y[j],-1]).T constraints += [Q[i, j] >= cp.abs(cp.transpose(X) @ Y @ X_j)]#约束条件 obj = cp.Minimize(expr) prob = cp.Problem(obj, constraints) prob.solve() position = y_.value print(expr1.value)#输出值 print(expr2.value) print(prob.value)#输出值 print(prob.status)#输出状态 print(position) return position
总结
1.理论算法与编程实现永远不等,不能轻易照搬,具体实现过程中要结合实际情况进行考虑,当求得的结果与预计相差很多时,可以尝试增加数值约束,因为计算机仿真只是近似,不是理论上的完美条件。
2.编程实现调用库时,最好按照库的标准写,如本例中矩阵点乘可以用numpy 的dot或者cvxpy的@,以及转置的.T和cp.transpose().但是dot有时会产生意想不到的情况,平白增加工作量。
3.复现算法时必须要对算法有深入理解,否则难以发现问题所在。
4.不要轻易怀疑工具包的问题,经过大量使用的工具包一定比你的感觉可靠。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。
精彩评论