开发者

Spring AI提示词的四种使用方法分享

目录
  • 1.简单提示词使用
  • 2.动态提示词
  • 3.从文件中读取动态提示词
  • 4.Lambda表达式提示词
  • 小结

mzJZp示词(Prompt)是输入给大模型(LLM)的文本指令,用于明确地告诉大模型你想要解决的问题或完成的任务,也是大语言模型理解用户需求并生成准确答案的基础。因此 prompt 使用的好坏,直接决定了大模型生成结果的质量(是否符合预期)

Spring AI提示词的四种使用方法分享

那问题来了,在 Spring AI/Spring AI Alibaba 如何用好提示词?以及提示词的使用方式有哪些呢?接下来本文一起来盘点一下。

1.简单提示词使用

最简单的设置固定系统提示词和用户提示词的用法如下:

@RequestMapping("/chat")
public String chat(String msg) {
    String result = chatClient.prompt()
            .system("你是一个问答助手") // 设置系统提示词
            .user(msg)                 // 设置用户提示词
            .call().content();
    System.out.println("结果:" + result);
    return result;
}

2.动态提示词

所谓的动态提示词指的是需要进行动态参数替换的提示词,它的基本使用如下:

@RequestMapping("/chat")
public String chat(String topic) {
  编程  PromptTemplate promptTemplate =
            new PromptTemplate("你是一个{role},讲一个关于{topic}的故事");
    Prompt prompt = promptTemplate.create(Map.of("role", "讲故事的助手",
            "topic", topic));
    return chatModel.call(prompt).getResult().getOutput().getText();
}

3.从文件中读取动态提示词

动态提示词如果比较短,我们可以像上面一样写到代码里面,如果比较长,我们可以把它单独放的某个文件模版中进行读取使用,具体实现如下:

// 从文件中读取提示词
@Value("classpath:type-system-prompt-txt")
private Resource systemPrompt;

@RequestMapping("/chat")
public String chat(String msg) {
    return chatClient.prompt()
            .system(systemPrompt) 
            .user(msg)
            .call()
            .content();
    }
}

4.Lamb编程客栈da表达式提示词

当提示词比较短的时候,除了可以使用 PromptTemplate 设置提示词之外,我们还可以使用 Lambda 表达式来实现动态提示词的设置,具体使用如下:

@RequestMapping("/chat")
public User chat(String name) {
    return chatClient.prompt()
            .user(msg -> msg.text("我叫{name},今年18岁,爱好打羽毛球。")
                    .param("nam编程客栈e", name))
            .call()
            .entity(User.class); // 结果化输出
}

小结

提示词是用户和大模型交互的直接手段,所以在程序中用好提示词是至关重要的。本文提供了 4 种提示词的使用方式,开发者可以根据具体php的业务场景,选择合适的提示词使用方式来完成 AI 应用开发。一起实操起来吧~

到此这篇关于Spring AI提示词的四种使用方法分享的文章就介绍到这了,更多相关Spring AI提示词用法内容请搜索编程客栈(www.devze.com)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程客栈(www.devze.com)!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新开发

开发排行榜