开发者

Python加速运行8个优化技巧分享

目录
  • 0. 代码优化原则
  • 1. 避免全局变量
  • 2. 避免.
    • 2.1 避免模块和函数属性访问
    • 2.2 避免类内属性访问
  • 3. 避免不必要的抽象
    • 4. 避免数据复制
      • 4.1 避免无意义的数据复制
      • 4.2 交换值时不使用中间变量
      • 4.3 字符串拼接用 join 而不是 +
    • 5. 利用 if 条件的短路特性
      • 6. 循环优化
        • 6.1 用 for 循环代替 while 循环
        • 6.2 使用隐式 for 循环代替显式 for 循环
        • 6.3 减少内层 for 循环的计算
      • 7. 使用 numba.jit
        • 8. 选择合适的数据结构

          0. 代码优化原则

          本文会介绍不少的 python 代码加速运行的技巧。在深入代码优化细节之前,需要了解一些代码优化基本原则。

          第一个基本原则是不要过早优化。很多人一开始写代码就奔着性能优化的目标,“让正确的程序更快要比让快速的程序正确容易得多”。因此,优化的前提是代码能正常工作。过早地进行优化可能会忽视对总体性能指标的把握,在得到全局结果前不要主次颠倒。

          第二个基本原则是权衡优化的代价。优化是有代价的,想解决所有性能的问题是几乎不可能的。通常面临的选择是时间换空间或空间换时间。另外,开发代价也需要考虑。

          第三个原则是不要优化那些无关紧要的部分。如果对代码的每一部分都去优化,这些修改会使代码难以阅读和理解。如果你的代码运行速度很慢,首先要找到代码运行慢的位置,通常是内部循环,专注于运行慢的地方进行优化。在其他地方,一点时间上的损失没有什么影响。

          1. 避免全局变量

          # 不推荐写法。代码耗时:26.8秒
          import math
           
          size = 10000
          for x in range(size):
              for y in range(size):
                  z = math.sqrt(x) + math.sqrt(y)
          

          许多程序员刚开始会用 Python 语言写一些简单的脚本,当编写脚本时,通常习惯了直接将其写为全局变量,例如上面的代码。但是,由于全局变量和局部变量实现方式不同,定义在全局范围内的代码运行速度会比定义在函数中的慢不少。通过将脚本语句放入到函数中,通常可带来 15% - 30% 的速度提升。

          # 推荐写法。代码耗时:20.6秒
          import math
          def main():  # 定义到函数中,以减少全部变量使用
              size = 10000
              for x in range(size):
                  for y in range(size):
                      z = math.sqrt(x) + math.sqrt(y)
           
          main()
          

          2. 避免.

          2.1 避免模块和函数属性访问

          # 不推荐写法。代码耗时:14.5秒
          import math
           
          def computeSqrt(size: int):
              result = []
              for i in range(size):
                  result.append(math.sqrt(i))
              return result
           
          def main():
              size = 10000
              for _ in range(size):
                  result = computeSqrt(size)
           
          main()
          

          每次使用 . (属性访问操作符时)会触发特定的方法,如 getattribute() 和 getattr() ,这些方法会进行字典操作,因此会带来额外的时间开销。通过 from import 语句,可以消除属性访问。

          # 第一次优化写法。代码耗时:10.9秒
          from math import sqrt
           
          def computeSqrt(size: int):
              result = []
              for i in range(size):
                  result.append(sqrt(i))  # 避免math.sqrt的使用
              return result
           
          def main():
              size = 10000
              for _ in range(size):
                  result = computeSqrt(size)
           
          main()
          

          js部变量的查找会比全局变量更快,因此对于频繁访问的变量 sqrt ,通过将其改为局部变量可以加速运行。

          # 第二次优化写法。代码耗时:9.9秒
          import math
           
          def computeSqrt(size: int):
              result = []
              sqrt = math.sqrt  # 赋值给局部变量
              for i in range(size):
                  result.append(sqrt(i))  # 避免math.sqrt的使用
              return result
           
          def main():
              size = 10000
              for _ in range(size):
                  result = computeSqrt(size)
           
          main()

          除了 math.sqrt 外, computeSqrt 函数中还有 . 的存在,那就是调用 list 的 append 方法。通过将该方法赋值给一个局部变量,可以彻底消除 computeSqrt 函数中 for 循环内部的.使用。

          # 推荐写法。代码耗时:7.9秒
          import math
           
          def computeSqrt(size: int):
              result = []
              append = result.append
              sqrt = math.sqrt    # 赋值给局部变量
              for i in range(size):
                  append(sqrt(i))  # 避免 result.append 和 math.sqrt 的使用
              return result
           
          def main():
              size = 10000
              for _ in range(size):
                  result = computeSqrt(size)
           
          main()

          2.2 避免类内属性访问

          # 不推荐写法。代码耗时:10.4秒
          import math
          from typing import List
          class DemoClass:
              def __init__(self, value: int):
                  self._value = value
              
              def computeSqrt(self, size: int) -> List[float]:
                  result = []
                  append = result.append
                  sqrt = math.sqrt
                  for _ in range(size):
                      append(sqrt(self._value))
                  return result
          def main():
              size = 10000
              for _ in range(size):
                  demo_instance = DemoClass(size)
                  result = demo_instance.computeSqrt(size)
          main()

          避免 . 的原则也适用于类内属性,访问 self._value 的速度会比访问一个局部变量更慢一些。通过将需要频繁访问的类内属性赋值给一个局部变量,可以提升代码运行速度。

          # 推荐写法。代码耗时:8.0秒
          import math
          from typing import List
          cjslass DemoClass:
              def __init__(self, value: int):
                  self._value = value
              
              def computeSqrt(self, size: int) -> List[float]:
                  result = []
                  append = result.append
                  sqrt = math.sqrt
                  value = self._value
                  for _ in range(size):
                      append(sqrt(value))  # 避免 self._value 的使用
                  return result
          def main():
              size = 10000
              for _ in range(size):
                  demo_instance = DemoClass(size)
                  demo_instance.computeSqrt(size)
          main()

          3. 避免不必要的抽象

          # 不推荐写法,代码耗时:0.55秒
          class DemoClass:
              def __init__(self, value: int):
                  self.value = value
           
              @property
              def value(self) -> int:
                  return self._value
           
              @value.setter
              def value(self, x: int):
                  self._value = x
           
          def main():
              size = 1000000
              for i in range(size):
                  demo_instance = DemoClass(size)
                  value = demo_instance.value
                  demo_instance.value = i
           
          main()

          任何时候当你使用额外的处理层(比如装饰器、属性访问、描述器)去包装代码时,都会让代码变慢。大部分情况下,需要重新进行审视使用属性访问器的定义是否有必要,使用 getter/setter 函数对属性进行访问通常是 C/C++ 程序员遗留下来的代码风格。如果真的没有必要,就使用简单属性。

          # 推荐写法,代码耗时:0.33秒
          class DemoClass:
              def __init__(self, value: int):
                  self.value = value  # 避免不必要的属性访问器
           
          def main():
              size = 1000000
              for i in range(size):
                  demo_instance = DemoClass(size)
                  value = demo_instance.value
                  demo_instance.value = i
           
          main()
          

          4. 避免数据复制

          4.1 避免无意义的数据复制

          # 不推荐写法,代码耗时:6.5秒
          def main():
              size = 10000
              for _ in range(size):
                  value = range(size)
                  value_list = [x for x in value]
                  square_list = [x * x for x in value_list]
           
          main()
          

          上面的代码中 value_list 完全没有必要,这会创建不必要的数据结构或复制。

          # 推荐写法,代码耗时:4.8秒
          def main():
              size = 10000
              for _ in range(size):
                  value = range(size)
                  square_list = [x * x for x in value]  # 避免无意义的复制
           
          main()
          

          另外一种情况是对 Python 的数据共享机制过于偏执,并没有很好地理解或信任 Python 的内存模型,滥用 copy.deepcopy() 之类的函数。通常在这些代码中是可以去掉复制操作的。

          4.2 交换值时不使用中间变量

          不推荐写法,代码耗时:0.07秒

          # 不推荐写法,代码耗时:0.07秒
          def main():
              size = 1000000
              for _ in range(size):
                  a = 3
                  b = 5
                  temp = a
                  a = b
                  b = temp
           
          main()
          

          上面的代码在交换值时创建了一个临时变量 temp ,如果不借助中间变量,代码更为简洁、且运行速度更快。

          # 推荐写法,代码耗时:0.06秒
          def main():
              size = 1000000
              for _ in range(size):
                  a = 3
                  b = 5
                  a, b = b, a  # 不借助中间变量
           
          main()
          

          4.3 字符串拼接用 join 而不是 +

          # 不推荐写法,代码耗时:2.6秒
          import string
          from typing import List
          def concatString(string_list: List[str]) -> str:
              result = ''
              for str_i in string_list:
                  result += str_i
              return result
          def main():
              string_list = list(string.ascii_letters * 100)
              for _ in range(10000):
                  result = concatString(string_list)
           
          main() 
          

          当使用 a + b 拼接字符串时,由于 Python 中字符串是不可变对象,其会申请一块内存空间,将 a 和 b 分别复制到该新申请的内存空间中。因此,如果要拼接 n 个字符串,会产生 n-1 个中间结果,每产生一个中间结果都需要申请和复制一次内存,严重影响运行效率。而使用 join() 拼接字符串时,会首先计算出需要申请的总的内存空间,然后一次性地申请所需内存,并将每个字符串元素复制到该内存中去。

          # 推荐写法,代码耗时:0.3秒
          import string
          from typing import List
          def concatString(string_list: List[str]) -> str:
              return ''.join(string_list)  # 使用 join 而不是 +
          def main():
              string_list = list(string.ascii_letters * 100)
              for _ in range(10000):
                  result = concatString(string_list)
           
          main()
          

          5. 利用 if 条件的短路特性

          # 不推荐写法,代码耗时:0.05秒
          from typing import List
           
          def concatString(string_lisjst: List[str]) -> str:
              abbreviations = {'cf.', 'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}
              abbr_count = 0
              result = ''
              for str_i in string_list:
                  if str_i in abbreviations:
                      result += str_i
              return result
           
          def main():
              for _ in range(10000):
                  string_list = ['Mr.', 'Hat', 'is', 'Chasing', 'the', 'black', 'cat', '.']
                  result = concatString(string_list)
           
          main()

          if 条件的短路特性是指对 if a and b 这样的语句, 当 a 为 False 时将直接返回,不再计算 b ;对于 if a or b 这样的语句,当 a 为 True 时将直接返回,不再计算 b 。因此, 为了节约运行时间,对于 or 语句,应该将值为 True 可能性比较高的变量写在 or 前,而 and 应该推后。

          # 推荐写法,代码耗时:0.03秒
          from typing import List
           
          def concatString(string_list: List[str]) -> str:
              abbreviations = {'cf.', 编程客栈'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}
              abbr_count = 0
              result = ''
              for str_i in string_list:
                  if str_i[-1] == '.' and str_i in abbreviations:  # 利用 if 条件的短路特性
                      result += str_i
              return result
           
          def main():
              for _ in range(10000):
                  string_list = ['Mr.', 'Hat', 'is', 'Chasing', 'the', 'black', 'cat', '.']
                  result = concatString(string_list)
           
          main()

          6. 循环优化

          6.1 用 for 循环代替 while 循环

          # 不推荐写法。代码耗时:6.7秒
          def computeSum(size: int) -> int:
              sum_ = 0
              i = 0
              while i < size:
                  sum_ += i
                  i += 1
              return sum_
          def main():
              size = 10000
              for _ in range(size):
                  sum_ = computeSum(size)
           
          main()
          

          Python 的 for 循环比 while 循环快不少。

          # 推荐写法。代码耗时:4.3秒
          def computeSum(size: int) -> int:
              sum_ = 0
              for i in range(size):  # for 循环代替 while 循环
                  sum_ += ijavascript
              return sum_
          def main():
              size = 10000
              for _ in range(size):
                  sum_ = computeSum(size)
           
          main()
          

          6.2 使用隐式 for 循环代替显式 for 循环

          针对上面的例子,更进一步可以用隐式 for 循环来替代显式 for 循环

          # 推荐写法。代码耗时:1.7秒
          def computeSum(size: int) -> int:
              return sum(range(size))  # 隐式 for 循环代替显式 for 循环
           
          def main():
              size = 10000
              for _ in range(size):
                  sum = computeSum(size)
           
          main()
          

          6.3 减少内层 for 循环的计算

          # 不推荐写法。代码耗时:12.8秒
          import math
           
          def main():
              size = 10000
              sqrt = math.sqrt
              for x in range(size):
                  for y in range(size):
                      z = sqrt(x) + sqrt(y)
           
          main()
          

          上面的代码中 sqrt(x) 位于内侧 for 循环, 每次训练过程中都会重新计算一次,增加了时间开销。

          # 推荐写法。代码耗时:7.0秒
          import math
           
          def main():
              size = 10000
              sqrt = math.sqrt
              for x in range(size):
                  sqrt_x = sqrt(x)  # 减少内层 for 循环的计算
                  for y in range(size):
                      z = sqrt_x + sqrt(y)
           
          main()
          

          7. 使用 numba.jit

          我们沿用上面介绍过的例子,在此基础上使用 numba.jit 。numba 可以将 Python 函数 JIT 编译为机器码执行,大大提高代码运行速度。

          # 推荐写法。代码耗时:0.62秒
          import numba
           
          @numba.jit
          def computeSum(size: float) -> int:
              sum = 0
              for i in range(size):
                  sum += i
              return sum
          def main():
              size = 10000
              for _ in range(size):
                  sum = computeSum(size)
           
          main()
          

          8. 选择合适的数据结构

          Python 内置的数据结构如 str , tuple , list , set , dict 底层都是 C 实现的,速度非常快,自己实现新的数据结构想在性能上达到内置的速度几乎是不可能的。

          list 类似于 C++ 中的 std::vector ,是一种动态数组。其会预分配一定内存空间,当预分配的内存空间用完,又继续向其中添加元素时,会申请一块更大的内存空间,然后将原有的所有元素都复制过去,之后销毁之前的内存空间,再插入新元素。删除元素时操作类似,当已使用内存空间比预分配内存空间的一半还少时,会另外申请一块小内存,做一次元素复制,之后销毁原有大内存空间。因此,如果有频繁的新增、删除操作,新增、删除的元素数量又很多时,list的效率不高。此时,应该考虑使用 collections.deque 。collections.deque 是双端队列,同时具备栈和队列的特性,能够在两端进行 O(1) 复杂度的插入和删除操作。

          list 的查找操作也非常耗时。当需要在 list 频繁查找某些元素,或频繁有序访问这些元素时,可以使用 bisect 维护 list 对象有序并在其中进行二分查找,提升查找的效率。

          另外一个常见需求是查找极小值或极大值,此时可以使用 heapq 模块将 list 转化为一个堆,使得获取最小值的时间复杂度是 O(1) 。

          以上就是Python加速运行8个优化技巧分享的详细内容,更多关于Python加速运行的资料请关注编程客栈(www.devze.com)其它相关文章!

          0

          上一篇:

          下一篇:

          精彩评论

          暂无评论...
          验证码 换一张
          取 消

          最新开发

          开发排行榜