3种Python查看神经网络结构的方法小结
目录
- 1. 网络结构代码
- 2. 查看结构
- 2.1 直接打印模型
- 2.2 可视化网络结构(需要安装 torchviz 包)
- 2.3 使用 summary 方法(需要安装 torchsummary 包)
1. 网络结构代码
import torch import torch.nn as nn # 定义Actor-Critic模型 class ActorCritic(nn.Module): def __init__(self, state_dim, action_dim): super(ActorCritic, self).__init__() self.actor = nn.Sequential( # 全连接层,输入维度为 state_dim,输出维度为 256 nn.Linear(state_dim, 64), nn.ReLU(), nn.Linear(64, action_dim), # Softmax 函数,将输出转换为概率分布,dim=-1 表示在最后一个维度上应用 Softmax nn.Softmax(dim=-1) ) self.critic = nn.Sequential( nn.Linear(state_dim, 64), nn.ReLU(), nn.Linear(64, 1) ) def forward(self, state): policy = self.actor(state) value = self.critic(state) return policy, value # 参数设置 state_dim = 1 action_dim = 2 model = ActorCritic(state_dim, action_dim)
2. 查看结构
2.1 直接打印模型
print(model)
输出:
ActorCritic(
(actor): Sequential( (0): Linear(in_features=1, out_features=64, bias=True) (1): ReLU() (2): Line编程客栈ar(in_features=64, out_features=2, bias=True) (3): Softmax(dim=-1) ) (critic): Sequential( (0): Linear(in_features=1, out_features=64, bias=True) (1): ReLU() (2): Linear(in_features=64, out_features=1, bias=True) ))
2.2 可视化网络结构(需要安装 torchviz 包)
安装 torchsummary 包:
$ pip install torchsummary
python 代码:
from torchviz import make_dot # 创建一个虚拟输入 x = torch.randn(1, state_dim) # 生成计算图 dot = make_dot(model(x), params=dict(model.named_parameters())) dot.render("actor_critic_model", format="png") # 保存为PNG图片
输出 actor_critic_model
digraph {
graph [size="12,12"] node [align=left fontname=monospace fontsize=10 height=0.2 ranksep=0.1 shape=box style=filled] 140281544075344 [label=" (1, 2)" fillcolor=darkolivegreen1] 140281544213744 [label=SoftmaxBackward0] 140281544213840 -> 140281544213http://www.devze.com744 140281544213840 [label=AddmmBackward0] 140281544213600 -> 140281544213840 140285722327344 [label="actor.2.bias (2)" fillcolor=lightblue] 140285722327344 -> 140281544213600 140281544213600 [label=AccumulateGrad] 140281544214032 -> 140281544213840 140281544214032 [label=ReluBackward0] 140281544213984 -> 140281544214032 140281544213984 [label=AddmmBackward0] 140281544214176 -> 140281544213984 140285722327024 [label="actor.0.bias (64)" fillcolor=lightblue] 140285722327024 -> 140281544214176 140281544214176 [label=AccumulateGrad] 140281544214224 -> 140281544213984 140281544214224 [label=TBackward0] 140281543934832 -> 140281544214224 140285722327264 [label="actor.0.weight (64, 1)" fillcolor=lightblue] 140285722327264 -> 140281543934832 140281543934832 [label=AccumulateGrad] 140281544213648 -> 140281544213840 140281544213648 [label=TBackward0] 140281544214080 -> 140281544213648 140285722327184 [label="actor.2.weight (2, 64)" fillcolor=lightblue] 140285722327184 -> 140281544214080 140281544214080 [label=AccumulateGrad] 140281544213744 -> 140281544075344 140285722328704 [label=" (1, 1)" fillcolor=darkolivegreen1] 140281544213888 [label=AddmmBackward0] 140281544214368 -> 140281544213888 140285722328064 [label="critic.2.bias (1)" fillcolor=lightblue] 140285722328064 -> 140281544214368 140281544214368 [label=AccumulateGrad] 140281544214128 -> 140281544213888 140281544214128 [label=ReluBackward0] 140281544214464 -> 140281544214128 140281544214464 [label=AddmmBackward0] 140281544214512 -> 140281544214464 140285722327424 [label="critic.0.bias (64)" fillcolor=lightblue] 140285722327424 -> 140281544214512 140281544214512 [label=AccumulateGrad] 140281544214560 -> 140281544214464 140281544214560 [label=TBackward0] 140281544214704 -> 140281544214560 140285722327504 [label="critic.0.weight (64, 1)" fillcolor=lightblue] 140285722327504 -> 140281544214704 140281544214704 [label=AccumulateGrad] 140281544213696 -> 140281544213888 140281544213696 [label=TBackward0] 140281544214272 -> 140281544213696 140285722327584 [label="critic.2.weight (1, 64)" fillcolor=lightblue] 140285722327584 -> 140281544214272 140281544214272 [label=AccumulateGrad] 140281544213888 -> 140285722328704}
输出模型图片:
2.3 使用 summary 方法(需要安装 torchsummary 包)
安装 torchsummary 包:
pip install torchsummary
代码:
from torchsummary import summary device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) model = model.to(device) summary(model, input_size=(state_dim,)) #查看模型参数 print("查看模型参数:") for name, param in model.named_parameters(): print(f"Layer: {name} | Size: {param.size()} | Values: {param[:2]}...")
输出:
cuda:0
---------------------------------------------------------------- Layer (type) Output Shape Param #================================================================ Linear-1 [-1, 64] 128 ReLU-2 [-1, 64] 0 Linear-3 [-1, 2] 130 Softmax-4 [-1, 2] 0 Linear-5 [-1, 64] 128 ReLU-6 [-1, 64] 0 Linear-7 [-1, 1] 65================================================================Total params: 451Trainable params: 451Non-trainable params: 0----------------------------------------------------------------Input size (MB): 0.00Forward/backward pass size (MB): 0.00Params size (MB): 0.00Estimated Total Size (MB): 0.00----------------------------------------------------------------查看模型参数:Layer: actor.0.weight | Size: torch.Size([64, 1]) |编程客栈 Values: tensor([[ 0.7747], [-0.0440]], device='cuda:0', grad_fn=<SliceBackward0>)...Layer: actor.0.bias | Size: torch.Size([64]) | Values: tensor([ 0.5995, -0.2155], device='cuda:0', grad_fn=<SliceBackward0>)...Layer: actor.2.weight | Size: torch.Size([2, 64]) | Values: tensor([[ 0.0373, 0.0851, 0.1000, 0.1060, 0.0387, 0.0479, 0.0127, 0.0696, 0.0388, 0.0033, 0.1173, -0.1195, -0.0830, 0.0186, 0.0063, -0.0863, -0.0353, 0.0782, -0.0558, 0.0011, -0.0533, 0.1241, 0.0120, -0.0906, -0.0551, -0.0673, -0.1070, 0.0402, -0.0662, 0.0596, -0.0811, 0.0457, 0.0349, 0.0564, -0.0155, -0.0404, 0.0843, -0.0978, 0.0459, 0.1097, -0.0858, 0.0736, -0.0067, -0.0756, -0.0363, -0.0525, -0.0426, -0.1087, -0.0611, 0.0420, -0.1038, 0.0402, 0.0065, -0.1217, -0.0467, 0.0383, -0.0217, 0.0283, 0.0python800, 0.0228, 0.0415, -0.0473, -0.0199, -0.0436], [-0.1118, -0.0806, -0.0700, -0.0224, 0.0335, -0.0087, 0.0265, -0.1196, -0.0907, -0.0360, 0.0621, -0.0471, -0.0939, -0.0912, -0.1061, 0.1051, &nbphpsp; -0.0592, -0.0757, 0.0758, -0.1082, -0.0317, 0.1208, -0.0279, -0.0693, 0.0920, -0.0318, -0.0476, 0.0236, -0.0761, 0.0591, 0.0862, -0.0712, 0.0156, -0.1073, 0.1133, 0.0039, -0.0191, 0.0605, -0.0686, -0.1202, 0.0962, 0.0581, 0.1145, 0.0741, -0.0993, -0.0987, 0.0939, 0.1006, 0.0773, -0.0756, -0.1096, 0.0156, -0.0599, 0.0857, 0.1005, -0.0618, 0.0474, 0.0066, -0.0531, -0.0479, 0.1136, 0.0356, 0.1169, -0.0023]], device='cuda:0', grad_fn=<SliceBackward0>)...Layer: actor.2.bias | Size: torch.Size([2]) | Values: tensor([-0.0039, 0.0937], device='cuda:0', grad_fn=<SliceBackward0>)...Layer: critic.0.weight | Size: torch.Size([64, 1]) | Values: tensor([[0.5799], [0.0473]], device='cuda:0', grad_fn=<SliceBackward0>)...Layer: critic.0.bias | Size: torch.Size([64]) | Values: tensor([ 0.6507, -0.6974], device='cuda:0', grad_fn=<SliceBackward0>)...Layer: critic.2.weight | Size: torch.Size([1, 64]) | Values: tensor([[ 0.0738, -0.0370, -0.1010, -0.0333, -0.0595, -0.0172, 0.0928, 0.0815, 0.1221, -0.0842, 0.0511, 0.0452, -0.0386, -0.0503, -0.0964, 0.0370, -0.0341, -0.0693, -0.0845, 0.0424, -0.0491, -0.0439, -0.0443, 0.0203, 0.0960, -0.1178, -0.0836, -0.0144, -0.0576, -0.0851, 0.0461, 0.1160, 0.0120, 0.1180, 0.0255, 0.1047, -0.0398, 0.0786, 0.1143, 0.0806, 0.1125, 0.0267, 0.0534, -0.0318, 0.1125, -0.0727, 0.1169, 0.0120, -0.0178, -0.0845, 0.0069, 0.0194, 0.1188, 0.0481, 0.1077, -0.0840, 0.1013, 0.0586, -0.0857, -0.0974, -0.0630, 0.0359, -0.0080, -0.0926]], device='cuda:0', grad_fn=<SliceBackward0>)...Layer: critic.2.bias | Size: torch.Size([1]) | Values: tensor([0.0621], device='cuda:0', grad_fn=<SliceBackward0>)...
到此这篇关于3种Python查看神经网络结构的方法小结的文章就介绍到这了,更多相关Python查看神经网络结构内容请搜索编程客栈(www.devze.com)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程客栈(www.devze.com)!
精彩评论