开发者

Pytorch之上/下采样函数torch.nn.functional.interpolate插值详解

目录
  • Pytorch上/下采样函数torch.nn.functional.interpolate插值
    • 1. upsample/downsample 3D tensor
    • 2. upsample/downsample 4D tensor
    • 3. upsample/downsample 5D tensor
  • 总结

    Pytorchpython上/下采样函数torch.nn.functional.interpolate插值

    torch.nn.functional.interpolate(input_tensor, size=None, scale_factor=8, mode='bilinear', align_corners=False)
    '''
    Down/up samples the input to either the given size or the given scale_factor
    The algorithm used for interpolation is determined by mode.
    Currently temporal, spatial and volumetric sampling are supported, i.e. expected inputs编程 are 3-D, 4-D or 5-D in shape.
    The input dimensions are interpreted in the form: mini-BATch x channels x [optional depth] x [optional height] x width.
    The modes available for resizing are: nearest, linear (3D-only), bilinear, bicubic (4D-only), trilinear (5D-only), area
    '''

    这个函数是用来上采样下采样tensor的空间维度(h,w)

    input_tensor支持输入3D (b, c, w)或(batch,seq_len,dim)、4D (b, c, h, w)、5D (b, c, f, h, w)的 tensor shape。其中b表示batch_size,c表示channel,f表示frames,h表示height,w表示weight。

    size是目标tensor的(w)/(h,w)/(f,h,w)的形状;scale_factor是采样tensor的saptial shape(w)/(h,w)/(f,h,w)的缩放系数,sizescale_factor两个参数只能定义一个,具体是上采样,还是下采样根据这两个参数判断。如果size或者scale_factorlist序列,则必须匹配输入的大小。

    • 如果输入3D,则它们的序列长度必须是1(只缩放最后1个维度w)。
    • 如果输入4D,则它们的序列长度必须是2(缩放最后2个维度h,w)。
    • 如果输入是5D,则它们的序列长度必须是3(缩放最后3个维度f,h,w)。

    插值算法mode可选:最近邻(nearest, 默认)线性(linear, 3D-only)双线性(bilinear, 4D-only)三线性(trilinear, 5D-only)等等。

    是否align_corners对齐角点:可选的bool值, 如果 align_corners=True,则对齐 input 和 output 的角点像素(corner pixels),保持在角点像素的值. 只会对 mode=linear, bilinear, trilinear 有作用. 默认是 False。一图看懂align_corners=TrueFalse的区别,从4×4上采样成8×8。

    一个是按四角的像素点中心对齐,另一个是按四角的像素角点对齐:

    Pytorch之上/下采样函数torch.nn.functional.interpolate插值详解

    import torch
    import torch.nn.functional as F
    b, c, f, h, w = 1, 3, 8, 64, 64

    1. upsample/downsample 3D tensor

    # interpolate 3D tensor
    x = torch.randn([b, c, w])
    ## downsample to (b, c, w/2)
    y0 = F.interpolate(x, scale_factor=0.5, mode='nearest')
    y1 = F.interpolate(x, size=[w//2], mode='nearest')
    y2 = F.interpolate(x, scale_factor=0.5, mode='linear')  # only 3D
    y3 = F.interpolate(x, size=[w//2], mode='linear')  # only 3D
    print(y0.shape, y1.shape, y2.shape, y3.shape)
    # torch.Size([1, 3, 32]) torch.Size([1, 3, 32]) torch.Size([1, 3, 32]) torch.Size([1, 3, 32])
    
    ## upsample to (b, c, w*2)
    y0 = F.interpolate(x, scale_factor=2, mode='nearest')
    y1 = F.interpolate(x, size=[w*2], mode='nearest')
    y2 = F.interpolate(x, scale_factor=2, mode='linear')  # only 3D
    y3 = F.interpolate(x, size=[w*2], mode='linear')  # only 3D
    print(y0.shape, y1.shape, y2.shape, y3.shape)
    # torch.Size([1, 3, 128]) torch.Size([1, 3, 128]) toandroidrch.Size([1, 3, 128]) torch.Size([1, 3, 128])

    2. upsample/downsample 4D tensor

    # interpolate 4D tensor
    x = torch.randn(b, c, h, w)
    ## downsample to (b, c, h/2, w/2)
    y0 = F.interpolate(x, scale_factor=0.5, mode='nearest')
    y1 = F.interpolate(x, size=[h//2, w//2], mode='nearest')
    y2 = F.interpolate(x, scale_factor=0.5, mode='bilinear')  # only 4D
    y3 = F.interpolate(x, size=[h//2, w//2], mode='bilinear')  # only 4D
    print(y0.shape, y1.shape, y2.shape, y3.shape)
    # torch.Size([1, 3, 32, 32]) torch.Size([1, 3, 32, 32]) torch.Size([1, 3, 32, 32]) torch.Size([1, 3, 32, 32])
    
    ## upsample to (b, c, h*2, w*2)
    y0 = F.interpolate(x, scale_factor=2, mode='nearest')
    y1 = F.ipythonnterpolate(x, size=[h*2, w*2], mode='nearest')
    y2 = F.interpolate(x, scale_factor=2, mode='bilinear')  # only 4D
    y3 = F.interpolate(x, size=[h*2, w*2], mode='bilinear')  # only 4D
    print(y0.shape, y1.shape, y2.shape, y3.shape)
    # torch.Size([1, 3, 128, 128]) torch.Size([1, 3, 128, 128]) torch.Size([1, 3, 128, 128]) torch.Size([1, 3, 128, 128])

    3. upsample/downsample 5D tensor

    # interpolate 5D tensor
    x = torch.randn(b, c, f, h, wwww.devze.com)
    ## downsample to (b, c, f/2, h/2, w/2)
    y0 = F.interpolate(x, scale_factor=0.5, mode='nearest')
    y1 = F.interpolate(x, size=[f//2, h//2, w//2], mode='nearest')
    y2 = F.interpolate(x, scale_factor=2, mode='trilinear')  # only 5D
    y3 = F.interpolate(x, size=[f//2, h//2, w//2], mode='trilinear')  # only 5D
    print(y0.shape, y1.shape, y2.shape, y3.shape)
    # torch.Size([1, 3, 4, 32, 32]) torch.Size([1, 3, 4, 32, 32]) torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 4, 32, 32])
    
    ## upsample to (b, c, f*2, h*2, w*2)
    y0 = F.interpolate(x, scale_factor=2, mode='nearest')
    y1 = F.interpolate(x, size=[f*2, h*2, w*2], mode='nearest')
    y2 = F.interpolate(x, scale_factor=2, mode='trilinear')  # only 5D
    y3 = F.interpolate(x, size=[f*2, h*2, w*2], mode='trilinear')  # only 5D
    print(y0.shape, y1.shape, y2.shape, y3.shape)
    # torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 16, 128, 128])

    总结

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程客栈(www.devze.com)。

    0

    上一篇:

    下一篇:

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    最新开发

    开发排行榜