Pytorch之上/下采样函数torch.nn.functional.interpolate插值详解
目录
- Pytorch上/下采样函数torch.nn.functional.interpolate插值
- 1. upsample/downsample 3D tensor
- 2. upsample/downsample 4D tensor
- 3. upsample/downsample 5D tensor
- 总结
Pytorchpython上/下采样函数torch.nn.functional.interpolate插值
torch.nn.functional.interpolate(input_tensor, size=None, scale_factor=8, mode='bilinear', align_corners=False) ''' Down/up samples the input to either the given size or the given scale_factor The algorithm used for interpolation is determined by mode. Currently temporal, spatial and volumetric sampling are supported, i.e. expected inputs编程 are 3-D, 4-D or 5-D in shape. The input dimensions are interpreted in the form: mini-BATch x channels x [optional depth] x [optional height] x width. The modes available for resizing are: nearest, linear (3D-only), bilinear, bicubic (4D-only), trilinear (5D-only), area '''
这个函数是用来上采样
或下采样
tensor的空间维度(h,w)
:
input_tensor
支持输入3D (b, c, w)或(batch,seq_len,dim)
、4D (b, c, h, w)
、5D (b, c, f, h, w)
的 tensor shape。其中b表示batch_size,c表示channel,f表示frames,h表示height,w表示weight。
size
是目标tensor的(w)/(h,w)/(f,h,w)
的形状;scale_factor
是采样tensor的saptial shape(w)/(h,w)/(f,h,w)
的缩放系数,size
和scale_factor
两个参数只能定义一个,具体是上采样,还是下采样根据这两个参数判断。如果size
或者scale_factor
是list序列
,则必须匹配输入的大小。
- 如果输入3D,则它们的序列长度必须是1(只缩放最后1个维度w)。
- 如果输入4D,则它们的序列长度必须是2(缩放最后2个维度h,w)。
- 如果输入是5D,则它们的序列长度必须是3(缩放最后3个维度f,h,w)。
插值算法mode
可选:最近邻(nearest, 默认)
、线性(linear, 3D-only)
、双线性(bilinear, 4D-only)
、三线性(trilinear, 5D-only)
等等。
是否align_corners
对齐角点:可选的bool值, 如果 align_corners=True
,则对齐 input 和 output 的角点像素(corner pixels),保持在角点像素的值. 只会对 mode=linear, bilinear, trilinear
有作用. 默认是 False。一图看懂align_corners
=True
与False
的区别,从4×4上采样成8×8。
一个是按四角的像素点中心对齐,另一个是按四角的像素角点对齐:
import torch import torch.nn.functional as F b, c, f, h, w = 1, 3, 8, 64, 64
1. upsample/downsample 3D tensor
# interpolate 3D tensor x = torch.randn([b, c, w]) ## downsample to (b, c, w/2) y0 = F.interpolate(x, scale_factor=0.5, mode='nearest') y1 = F.interpolate(x, size=[w//2], mode='nearest') y2 = F.interpolate(x, scale_factor=0.5, mode='linear') # only 3D y3 = F.interpolate(x, size=[w//2], mode='linear') # only 3D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 32]) torch.Size([1, 3, 32]) torch.Size([1, 3, 32]) torch.Size([1, 3, 32]) ## upsample to (b, c, w*2) y0 = F.interpolate(x, scale_factor=2, mode='nearest') y1 = F.interpolate(x, size=[w*2], mode='nearest') y2 = F.interpolate(x, scale_factor=2, mode='linear') # only 3D y3 = F.interpolate(x, size=[w*2], mode='linear') # only 3D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 128]) torch.Size([1, 3, 128]) toandroidrch.Size([1, 3, 128]) torch.Size([1, 3, 128])
2. upsample/downsample 4D tensor
# interpolate 4D tensor x = torch.randn(b, c, h, w) ## downsample to (b, c, h/2, w/2) y0 = F.interpolate(x, scale_factor=0.5, mode='nearest') y1 = F.interpolate(x, size=[h//2, w//2], mode='nearest') y2 = F.interpolate(x, scale_factor=0.5, mode='bilinear') # only 4D y3 = F.interpolate(x, size=[h//2, w//2], mode='bilinear') # only 4D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 32, 32]) torch.Size([1, 3, 32, 32]) torch.Size([1, 3, 32, 32]) torch.Size([1, 3, 32, 32]) ## upsample to (b, c, h*2, w*2) y0 = F.interpolate(x, scale_factor=2, mode='nearest') y1 = F.ipythonnterpolate(x, size=[h*2, w*2], mode='nearest') y2 = F.interpolate(x, scale_factor=2, mode='bilinear') # only 4D y3 = F.interpolate(x, size=[h*2, w*2], mode='bilinear') # only 4D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 128, 128]) torch.Size([1, 3, 128, 128]) torch.Size([1, 3, 128, 128]) torch.Size([1, 3, 128, 128])
3. upsample/downsample 5D tensor
# interpolate 5D tensor x = torch.randn(b, c, f, h, wwww.devze.com) ## downsample to (b, c, f/2, h/2, w/2) y0 = F.interpolate(x, scale_factor=0.5, mode='nearest') y1 = F.interpolate(x, size=[f//2, h//2, w//2], mode='nearest') y2 = F.interpolate(x, scale_factor=2, mode='trilinear') # only 5D y3 = F.interpolate(x, size=[f//2, h//2, w//2], mode='trilinear') # only 5D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 4, 32, 32]) torch.Size([1, 3, 4, 32, 32]) torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 4, 32, 32]) ## upsample to (b, c, f*2, h*2, w*2) y0 = F.interpolate(x, scale_factor=2, mode='nearest') y1 = F.interpolate(x, size=[f*2, h*2, w*2], mode='nearest') y2 = F.interpolate(x, scale_factor=2, mode='trilinear') # only 5D y3 = F.interpolate(x, size=[f*2, h*2, w*2], mode='trilinear') # only 5D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 16, 128, 128])
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程客栈(www.devze.com)。
精彩评论