开发者

Java实现Consul/Nacos根据GPU型号、显存余量执行负载均衡的步骤详解

目录
  • Java实现Consul/Nacos根据GPU型号、显存余量执行负载均衡
  • 步骤一:服务端获取GPU元数据
    • 1. 添加依赖
    • 2. 实现GPU信息采集
  • 步骤二:服务注册到Consul/Nacos
    • 1. Consul注册实现
    • 2. Nacos注册实现
  • 步骤三:动态更新元数据
    • 步骤四:客户端负载均衡(Spring Cloud示例)
      • 1. 自定义负载均衡器
      • 2. 配置负载均衡策略

    Java实现Consul/Nacos根据GPU型号、显存余量执行负载均衡

    步骤一:服务端获取GPU元数据

    1. 添加依赖

    pom.XML中引入Apache Commons Exec用于执行命令:

    <dependency>
        <groupId>org.apache.commons</groupId>
        <artifactId>commons-exec</artifactId>
        <version>1.3</version>
    </dependency>
    <dependency>
        <groupId>com.google.code.gson</groupId>
        <artifactId>gson</artifactId>
        <version>2.8.9</version>
    </dependency>

    2. 实现GPU信息采集

    import org.apache.commons.exec.CommandLine;
    import org.apache.commons.exec.DefaultExecutor;
    import org.apache.commons.exec.PumpStreamHandler;
    import java.io.ByteArrayOutputStream;
    import java.io.IOException;
    import com.google.gson.Gson;
    public class GpuInfoUtil {
        public static List<GpuMeta> getGpuMetadata() throws IOException {
            CommandLine cmd = CommandLine.parse("nvidia-smi --query-gpu=name,memory.total,memory.free --format=csv,noheader,nounits");
            ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
            PumpStreamHandler streamHandler = new PumpStreamHandler(outputStream);
            DefaultExecutor executor = new DefaultExecutor();
            executor.setStreamHandler(streamHandler);
            executor.execute(cmd);
            String output = outputStream.toString();
            return parseoutput(output);
        }
        private static List<GpuMeta> parseOutput(String output) {
            List<GpuMeta> gpus = new ArrayList<>();
            for (String line : output.split("\\r?\\n")) {
                String[] parts = line.split(",");
                if (parts.length >= 3) {
                    String name = parts[0].trim();
                    long total = Long.parseLong(parts[1].trim()) * 1024 * 1024; // MB -> bytes
                    long free = Long.parseLong(parts[2].trim()) * 1024 * 1024;
                    gpus.add(new GpuMeta(name, total, free));
                }
            }
            return gpus;
        }
        public static class GpuMeta {
            private String name;
            private long totalMem;
            private long freeMem;
            // 构造方法、getters、setters省略
        }
    }

    步骤二:服务注册到Consul/Nacos

    1. Consul注册实现

    import com.ecwid.consul.v1.ConsulClient;
    import com.ecwid.consul.v1.agent.model.NewService;
    public class ConsulRegistrar {
        public void register(Strinhttp://www.devze.comg serviceName, String ip, int port) throws Exception {
            ConsulClient consul = new ConsulClient("localhost", 8500);
            List<GpuMeta> gpus = GpuInfoUtil.getGpuMetadata();
            NewService service = new NewService();
            service.setId(serviceName + "-" + ip + ":" + port);
            service.setName(serviceName);
            service.setAddress(ip);
            service.setPort(port);
            // 序列化GPU元数据
            Gson gson = new Gson();
            service.getMeta().put("gpus", gson.tojson(gpus));
            consul.agentServiceRegister(service);
        }
    }

    2. Nacos注册实现

    import com.alibaba.nacos.api.naming.NamingFactory;
    import com.alibaba.nacos.api.naming.NamingService;
    import com.alibaba.nacos.api.naming.pojo.Instance;
    public class NacosRegistrar {
        public void register(String serviceName, String ip, int port) throws Exception {
            NamingService naming = NamingFactory.createNamingService("localhost:8848");
            List<GpuMeta> gpus = GpuInfoUtil.getGpuMetadata();
            Instance instance = new Instance();
            instance.setIp(ip);
            instance.setPort(port);
            instance.setServiceName(serviceName);
            instance.getMetadata().put("gpus", new Gson().toJson(gpus));
            naming.registerInstance(serviceName, instance);
        }
    }

    步骤三:动态更新元数据

    import java.util.concurrent.Executors;
    import java.util.concurrent.ScheduledExecutorService;
    import java.util.concurrent.TimeUnit;
    public class MetadataUpdater {
        private ScheduledExecutorService scheduler = Executors.newSingleThreadScheduledExecutor();
        private ConsulClient consulClient;
        private String serviceId;
        public void startUpdating() {
            scheduler.scheduleAtFixedRate(() -> {
                try {
                    List<GpuMeta> gpus = GpuInfoUtil.getGpuMetadata();
                    String gpuJson = new Gson().toJson(gpus);
                    // 重新注册以更新元数据
                    NewService service = new NewService();
                    service.setId(serviceId);
                    service.setMeta(Collections.singletonMap("gpus", gpuJson));
                    consulClient.agentServiceRegister(service);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }, 0, 10, TimeUnit.SECONDS);
        }
    }

    步骤四:客户端负载均衡(Spring Cloud示例)

    1. 自定义负载均衡器

    import org.springframework.cloud.client.ServiceInstance;
    import org.springframework.cloud.loadbalancer.core.ServiceInstanceListSupplier;
    import reactor.core.publisher.Flux;
    public class GpuAwareServiceSupplier implements ServiceInstanceListSupplier {
        private final ServiceInstanceListSjavascriptupplier dejavascriptlegate;
        private final Gson gson = new Gson();
        public GpuAwareServiceSupplier(ServiceInstanceListSupplier delegate) {
            this.delegate = delegate;
        }
        @Override
        public Flux<List<ServiceInstance>> get() {
            return delegate.get().map(instances -> 
                instances.stream()
                    .filter(instance -> {js
                        String gpuJson = instance.getMetadata().get("gpus");
                        List<GpuMeta> gpus = gson.fromJson(gpuJson, new TypeToken<List<GpuMeta>>(){}.getType());
                        return gpus.stream().anyMatch(g -> g.getFreeMem() > 2 * 1024 * 1024 * 1024L); // 2GB
                    })
                    .collect(Collectors.toList())
            );
        }
    }

    2. 配置负载均衡策略

    @Configuration
    public class LoadBalancerConfig {
        @Bean
        public ServiceInstanceListSupplier discoveryClientSupplier(
            ConfigurableApplicationContext context) {
            return ServiceInstanceListSupplier.builder()
                    .withDiscoveryClient()
                    .withCaching()
                    .withHealthChecks()
                    .withblockingDiscoveryClient()
                    .build(context);
        }
    }

    最终验证

    检查注册中心元数据

    curl http://localhost:8500/v1/catalog/service/my-service | jq .

    输出应包含类似:

    {
      "ServiceMeta": {
        "gpus": "[{\"name\":\"Tesla T4\",\"totalMem\":17179869184,\"freeMem\":8589934592}]"
      }
    }

    客户端调用验证

    客户端会自动选择显存充足的节点,日志输出示例:

    INFO Selected instance 192.168.1.101:80www.devze.com80 with 8GB free GPU memory

    通过以上步骤,即可在Java中实现基于GPU元数据的服务注册与负载均衡。

    到此这篇关于Java实现Consul/Nacos根据GPU型号、显存余量执行负载均衡的文章就介绍到这了,更多相关Java负载均衡内容请搜索编程客栈(www.devze.com)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程客栈(www.devze.com)!

    0

    上一篇:

    下一篇:

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    最新开发

    开发排行榜