Python matplotlib实战之漏斗图绘制
目录
- 1. 主要元素
- 2. 适用的场景
- 3. 不适用的场景
- 4. 分析实战
- 4.1. 数据来源
- 4.2. 数据清理
- 4.3. 分析结果可视化
漏斗图,形如“漏斗”,用于展示数据的逐渐减少或过滤过程。
它的起始总是最大,并在各个环节依次减少,每个环节用一个梯形来表示,整体形如漏斗。
一般来说,所有梯形的高度应是一致的,这会有助人们辨别数值间的差异。
需要注意的是,漏斗图的各个环节,有逻辑上的顺序关系。
同时,漏斗图的所有环节的流量都应该使用同一个度量。
通过漏斗图,可以较直观的看出流程中各部分的占比、发现流程中的问题,进而做出决策。
1. 主要元素
漏斗图的主要元素包括:
- 分类:漏斗图中的android不同层级或步骤。每个分类代表一个特定的过程、筛选或转化。
- 倒梯形:表示在每个阶段中的数据数量或数量的百分比。通常,随着阶段的推进,数据量会逐渐减少。
- 数据流:表示数据在不同阶段之间的流动路径。它显示了数据从一个阶段到另一个阶段的转移和过滤过程。
- 转化率:表示在每个阶段中数据的转化率或转化的百分比。它反映了数据在不同阶段之间的损失或过滤程度。
2. 适用的场景
漏斗图适用的分析场景包括:
- 销售转化分析:跟踪销售过程中的潜在客户数量,并展示他们在不同阶段的转化率,从而帮助分析销售流程中的瓶颈和改进机会。
- 市场营销分析:展示市场活动中的潜在客户数量,并显示他们在不同营销阶段的转化率,从而评估市场策略的有效性和改进方向。
- 用户体验分析:追踪用户在产品或服务使用过程中的转化率,帮助分析用户体验中的瓶颈和提升点,从而优化产品或服务设计。
- 网站流量分析:展示网站访问者在不同页面或功能模块之间的转化率,帮助分析用户行为和改进网站设计。
3. 不适用的场景
然而,漏斗图并不适用于所有分析场景。以下是一些不适合使用漏斗图的情况:
- 数据无序或重复:如果数据没有明确的阶段或无法按照特定的流程进行过滤或转化,漏斗图可能不适用。
- 数据缺失或不完整:如果数据在不同阶段之间存在缺失或不完整,漏斗图可能无法准确反映数据流动和转化情况。
- 多个并行路径:如果数据在不同阶段之间存在多个并行路径,并且无法简单地表示为单一的线性流程,漏斗图可能无法有效展示数据流动。
4. 分析实战
本次用漏斗图分析各个学历的毕业生人数,从小学学历到博士学历。
4.1. 数据来源
数据来源国家统计局公开的数据,整理好的数据可从下面的地址下载:databook.top/nation/A0M
使用其中的文件:A0M0203.csv
(各级各类学历教育毕业生数)
fp = "d:/share/data/A0M0203.csv" df = pd.read_csv(fp) df
4.2. 数据清TFupWxbwU理
漏斗图不需要时间序列数据,所以,只提取2021年的数据中从小学到博士的6种学历的毕业生人数。
data = df[df["sj"] == 2021] #A0M020312: 普通小学毕业生数(万人) #A0M02030T: 初中阶段教育毕业生数(万人) #A0M02030J: 普通高中毕业生数(万人) #A0M020306: 普通本科毕业生数(万人) #A0M020304: 硕士毕业生数(万人) #A0M020303: 博士毕业生数(万人) data = data[ data["zb"].isin( [ "A0M020312", "A0M02030T", "A0M02030J", "A0M020306", "A0M020304", "A0M020303", ] ) ] data = data.sohttp://www.devze.comrt_values("value", ascending=False) data
4.3. 分析结果可视化
with plt.style.context("dark_background"): fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 1, 1]) colors = plt.cm.Set2.colors cnt = len(data) y = [[1 + i * 3, 3.8 + i * 3] for i in range(cnt)] y_ticks = [2 + i * 3 for i in range(cnt)] start_x1 = 5 start_x2 = -5 for i in range(cnt): ax.fill_betweenx( y=y[i], x1=[start_x1, data.iloc[i, 编程4]], x2=[start_x2, -1 * data.iloc[i, 4]], color=colors[i], ) start_x1 = data.iloc[i, 4] start_x2 = -1 * data.iloc[i, 4] ax.set_xticks([], []) ax.set_yticks(y_ticks, data["zbCN"]) for y, value in zip(y_ticks, data["value"]): ax.text( 10, y, value, fontsize=16, fontweight="bold", color="white", ha="center", ) ax.grid(False) ax.set_title("2021年各学历毕业人数")
从图中可以看出,完成9年义务教育的比例很高。
初中到高中,人数几乎减半,而本科考研,硕士考博的人数比例更是锐减。
到此这篇关于python matplotlib实战之漏斗图绘制的文章就介绍到这了,更多相关matplotlib漏斗图内容请搜索编程客栈(www.devze.com)以前的文章或继续javascript浏览下面的相关文章希望大家以后多多支持编程客栈(www.devze.com)!
精彩评论