pytorch版本PSEnet训练并部署方式
目录
- 概述
- 制作数据集
- 1、训练的数据集
- 2、将数据集分成训练集和测试集
- 3、训练
- 4、部署测试
- 总结
概述
源码地址
torch版本
训练环境没有按照torch的readme一样的环境,自己部署环境为:
torch==1.9.1 torchvision==0.10.1 python==3.8.0 cuda==10.2 mmcv==0.2.12 editdistance==0.5.3 Polygon3==3.0.9.1 pyclipper==1.3.0 opencv-python==3.4.2.17 Cython==0.29.24
./compile.sh
制作数据集
1、训练的数据集
采用的是rolabelimg进行标注,需要转换为ic2015格式的数据。
转换代码:
import os from lXML import etree import numpy as np import math src_xml = "ANN" txt_dir = "gt" xml_listdir = os.listdir(src_xml) xml_listpath = [os.path.join(src_xml,xml_listdir1) for xml编程_listdir1 in xml_listdir] def xml_out(xml_path): gt_lines = [] ET = etree.parse(xml_path) objs = ET.findall("object") for ix,obj in enumerate(objs): name = obj.find("name").text robox = obj.find("robndbox") cx = int(float(robox.find("cx").text)) cy = int(float(robox.find("cy").text)) w = int(float(robox.find("w").text)) h = int(float(robox.find("h").text)) angle = float(robox.find("angle").text) # angle = math.degrees(angle1) wx1 = cx - int(0.5 * w) wy1 = cy - int(0.5 * h) wx2 = cx + int(0.5 * w) wy2 = cy - int(0.5 * h) wx3 = cx - int(0.5 * w) wy3 = cy + int(0.5 * h) wx4 = cx + int(0.5 * w) wy4 = cy + int(0.5 * h) x1 = int((wx1 - cx) * np.cos(angle) - (wy1 - cy) * np.sin(angle) + cx) y1 = int((wx1 - cx) * np.sin(angle) - (wvIawDDSy1 - cy) * np.cos(angle) + cy) x2 = int((wx2 - cx) * np.cos(angle) - (wy2 - cy) * np.sin(angle) + cx) y2 = int((wx2 - cx) * np.sin(angle) - (wy2 - cy) * np.cos(angle) + cy) x3 = int((wx3 - cx) * np.cos(angle) - (wy3 - cy) * np.sin(angle) + cx) y3 = int((wx3 - cx) * np.sin(angle) - (wy3 - cy) * np.cos(angle) + cy) x4 = int((wx4 - cx) * np.cos(angle) - (wy4 - cy) * np.sin(angle) + cx) y4 = int((wx4 - cx) * np.sin(angle) - (wy4 - cy) * np.cos(angle) + cy) lines = str(x1)+","+str(y1)+","+str(x2)+","+str(y2)+","+\ str(x3)+","+str(y3)+","+str(x4)+","+str(y4)+","+str(name)+"\n" gt_lines.append(lines) return gt_lines def main(): count = 0 for xml_dir in xml_listdir: gt_lines = xml_out(os.path.join(src_xml,xml_dir)) txt_path = "gt_" + xml_dir[:-4] + ".txt" with open(os.path.join(txt_dir,txt_path),"a+") as fd: fd.writelines(gt_lines) count +=1 print("Write file %s" % str(count)) if __name__ == "__main__": main()
rolabelimg标注后的xml文件和labelimg的xml有些区别,根据不同的标注软件,转换代码略有区别。
转换后的格式为x1,y1,x2,y2,x3,y3,x4,y4,"classes"
,此处classes为检测的类别,如果是模糊训练的话,classes为“###”。
但是重点,这个源代码对于模糊训练,loss一直为1。
2、将数据集分成训练集和测试集
这里可以按照源码路径存放数据集,也可以修改源码存放位置。
PSENet-python3\dataset\psenet\psenet_ic15.py
修改下述代码为自己文件夹
3、训练
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py config/psenet/psenet_r50_ic15_736.py
其中根据源码中的readme,
可以根据自己的需要,自行选择配置文件。
4、部署测试
import torch import numpy as np import argparse import os import os.path as osp import sys import time import json from mmcv import Config import cv2 from torchvision import transforms from dataset import build_data_loader from models import build_model from models.utils import fuse_module from utils import ResultFormat, AverageMeter def prepare_image(image, target_size): """Do image preprocessing before prediction on any data. :param image: original image :param target_size: target image size :return: preprocessed image """ #assert os.path.exists(img), 'file is not exists' #img = cv2.imread(img) img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # h, w = image.shape[:2] # scale = long_size / max(h, w) img = cv2.resize(img, target_size) # 将图片由(w,h)变为(1,img_channel,h,w) tensor = transforms.ToTensor()(img) tensor = tensor.unsqueeze_(0) tensor = tensor.to(torch.device("cuda:0")) return tensor def report_speed(outputs, speed_meters): total_time = 0 for key in outputs: if 'time' in key: total_time += outputs[key] speed_meters[key].update(outputs[key]) print('%s: %.4f' % (key编程, speed_meters[key].avg)) speed_meters['total_time'].update(total_time) print('FPS: %.1f' % (1.0 / speed_meters['total_time'].avg)) def load_model(cfg): model = build_model(cfg.model) modelvIawDDS = model.cuda() model.eval() checkpoint = "psenet_r50_ic15_1024_finetune/checkpoint_580ep.pth.tar" if checkpoint is not None: if os.path.isfile(checkpoint): print("Loading model and optimizer from checkpoint '{}'".format(checkpoint)) sys.stdout.flush() checkpoint = torch.load(checkpoint) d = dict() for key, value in checkpoint['state_dict'].items(): tmp = key[7:] d[tmp] = value model.load_state_dict(d) else: print("No checkpoint found at") raise # fuse conv and bn model = fuse_module(model) return model if __name__ == '__main__': src_dir = "testimg/" save_dir = "test_save/" if not os.path.exists(save_dir): os.makedirs(save_dir) cfg = Config.fromfile("PSENet/config/psenet/psenet_r50_ic15_1024_finetune.py") for d in [cfg, cfg.data.test]: d.update(dict( report_speed=False )) if cfg.report_speed: speed_meters = dict( backbone_time=AverageMeter(500), neck_time=AverageMeter(500), det_head_time=AverageMeter(500), det_pse_time=AverageMeter(500), rec_time=AverageMeter(500), total_time=AverageMeter(500) ) model = load_model(cfg) model.eval() count = 0 for img_name in os.listdir(src_dir): img = cv2.imread(src_dir + img_name) tensor = prepare_image(img, target_size=(1376, 1024)) data = dict() img_metas = dict() data['imgs'] = tensor img_metas['org_img_size'] = torch.tensor([[img.shape[0], img.shape[1]]]) img_metas['img_size'] = torch.tensor([[1376, 1024]]) data['img_metas'] = img_metas data.update(dict( cfg=cfg )) with torch.no_开发者_Go入门grad(): outputs = model(**data) if cfg.report_speed: report_speed(outputs, speed_meters) for bboxes in outputs['bboxes']: x1 = bboxes[0] javascript y1 = bboxes[1] x2 = bboxes[4] y2 = bboxes[5] cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 3) count = count + 1 cv2.imwrite(save_dir + img_name, img) print("img test:", count)
from dataset import build_data_loader from models import build_model from models.utils import fuse_module from utils import ResultFormat, AverageMeter
训练代码里含有。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。
精彩评论