开发者

Spark Streaming编程初级实践详解

目录
  • 写在前面
  • 1. 安装Flume
    • 安装命令
  • 2.使用Avro数据源测试Flume
    • 题目描述
    • Flume配置文件
    • 执行命令
    • 执行结果如下
  • 3. 使用netcat数据源测试Flume
    • 题目描述
    • 编写Flume配置文件
  • 4. 使用Flume作为Spark Streaming数据源
    • 题目描述
    • 编写Flume配置文件
    • 主程序代码
    • 执行结果1
    • 执行结果2

写在前面

  • linux:Centos7.5
  • Spark: spark-3.0.0-bin-hadoop3.2
  • Flume:Flume-1.9.0
  • IDE:IntelliJ IDEA2020.2.3

1. 安装Flume

Flume是Cloudera提供的一个分布式、可靠、可用的系统,它能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。Flume 的核心是把数据从数据源收集过来,再送到目的地。请到Flume官网下载Flume1.7.0安装文件,下载地址如下:

www.apache.org/dyn/closer.…

或者也可以直接到本教程官网的“下载专区”中的“软件”目录中下载apache-flume-1.7.0-bin.tar.gz。

下载后,把Flume1.7.0安装到Linux系统的“/usr/local/flume”目录下,具体安装和使用方法可以参考教程编程客栈官网的“实验指南”栏目中的“日志采集工具Flume的安装与使用方法。

安装命令

tar -zxvf apache-flume-1.9.0-bin.tar.gz -C /export/server/
mv apache-flume-1.9.0-bin/ flume-1.9.0
sudo vi /etc/profile
export FLUME_HOME=/usr/local/flume
export PATH=$PATH:$FLUME_HOME/bin
source /etc/profile
mv flume-env.sh.template flume-env.sh
  • 查看版本号
bin/flume-ng version

Spark Streaming编程初级实践详解

2.使用Avro数据源测试Flume

题目描述

Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制。请对Flume的相关配置文件进行设置,从而可以实现如下功能:在一个终端中新建一个文件helloworld.txt(里面包含一行文本“Hello World”),在另外一个终端中启动Flume以后,可以把helloworld.txt中的文本内容显示出来。

Flume配置文件

al.sources = r1
a1.sinks = k1
a1.channels = c1
a1.sources.r1.type = avro
a1.sources.r1.channels= c1
a1.sources.r1.bind = 0.0.0.0
al.sources.r1.port = 4141
a1.sinks.k1.type = logger
a1.channels.c1.type = memory
al.channels.c1.capacity = 1000
a1.channels.c1.transaction = 100
al.sources.r1.channels = c1
a1.sinks.k1.channel=c1

执行命令

  • 先进入到Flume安装目录,执行以下第一行命令;
  • 开始新的一个会话窗口,执行第二行命令写入数据到指定的文件中
  • 查看上一步骤中指定的文件内容
./bin/flume-ng agent -c . -f ./conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
echo 'hello,world' >> ./log.00
bin/flume-ng avro-client --conf conf -H localhost -p 4141 -F ./log.00

执行结果如下

Spark Streaming编程初级实践详解

3. 使用netcat数据源测试Flume

题目描述

请对Flume的相关配置文件进行设置,从而可以实现如下功能:在一个Linux终端(这里称为“Flume终端”)中,启动Flume,在另一个终端(这里称为“Telnet终端”)中,输入命令“telnet localhost 44444”,然后,在Telnet终端中输入任何字符,让这些字符可以顺利地在Flume终端中显示出来。

编写Flume配置文件

al.sources = r1
a1.sinks = k1
a1.channels = c1
al.sources.r1.type = netcat
al.sources.r1.channels = c1
a1.sources.r1.bind = localhost
al.sources.r1.port = 44444
a1.sinks.k1.type = logger
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
al.channels.c1.transaction = 100
al.sources.r1.channels = c1
a1.sinks.k1.channel = c1
  • 执行以下命令
./bin/flume-ng agent -c . -f ./netcatExample.conf -n a1 -Dflume.root.logger=INFO,console
telnet localhost 44444
  • 会话窗口成功得到数据

Spark Streaming编程初级实践详解

4. 使用Flume作为Spark Streaming数据源

题目描述

Flume是非常流行的日志采集系统,可以作为Spark Streaming的高级数据源。请把Flume Source设置为netcat类型,从终端上不断给Flume Source发送各种消息,Flume把消息汇集到Sink,这里把Sink类型设置为avro,由Sink把消息推送给Spark Streaming,由自己编写的Spark Streaming应用程序对消息进http://www.devze.com行处理。

编写Flume配置文件

al.sources = r1
a1.sinks = k1
a1.channels =  c1
al.sources.r1.type = netcat
al.sources.r1.bind = localhost
a1.sources.r1.port = 33333
a1.sinks.k1.type = avro
al.sinks.k1.hostname = localhost
a1.sinks.k1.port = 44444
a1.channels.c1.type = memory
al.channels.c1.capacity = 1000000
a1.channels.c1.transactionCapacity = 1000000
al.sources.r1.channels = c1
a1.sinks.k1.channel = c1

主程序代码

import org.apache.spark.SparkConf
import 编程客栈org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.Milliseconds
import org.apache.spark.streaming.flume._
import org.apache.spark.util.IntParam
object FlumeEventCount {
    def main(args: Array[String]): Unit = {
        if (args.length < 2) {
            System.err.println( "Usage: FlumeEventCount <host> <port>")
            System.exit(1)
        }
        StreamingExamples.setStreamingLogLevels()
        val Array(host, IntParam(port)) = args
        val BATchInterval = Millisecojavascriptnds(2000)
        val sc = new SparkConf()
          .setAppName("FlumeEventCount")
//          .setMaster("local[2]")
        val ssc = new StreamingContext(sc, batchInterval)
        val stream = FlumeUtils.createStream(ssc, host, port, StorageLevel.MEMORY_ONLY_SER_2)
        stream.count().map(cnt => "Received " + cnt + " flume events." ).print()
        ssc.start()
        ssc.awaitTermination()
    }
}

执行结果1

Spark Streaming编程初级实践详解

import org.apache.log4j.{Level, Logger}
import org.apache.spark.internal.Logging
object StreamingExamples extends Logging {
    def setStreamingLogLevels(): Unit = {
        val log4jInitialized = Logger.getRootLogger.getAllAppenders.hasMoreElements
        if (!log4jInitialized) {
            l开发者_C教程ogInfo("Setting log level to [WARN] for streaming example." +http://www.devze.com " To override add a custom log4j.properties to the classpath.")
            Logger.getRootLogger.setLevel(Level.WARN)
        }
    }
}

执行结果2

Spark Streaming编程初级实践详解

以上就是Spark Streaming编程初级实践详解的详细内容,更多关于Spark Streaming编程的资料请关注我们其它相关文章!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新开发

开发排行榜