Golang并发编程之main goroutine的创建与调度详解
目录
- 0. 简介
- 1. 创建main goroutine
- 2. 调度main goroutine
0. 简介
上一篇博客我们分析了调度器的初始化,这篇博客我们正式进入main
函数及为其创建的goroutine
的过程分析。
1. 创建main goroutine
接上文,在runtime/asm_amd64.s
文件的runtime·rt0_go
中,在执行完runtime.schedinit
函数进行调度器的初始化后,就开始创建main goroutine
了。
// create a new goroutine to start program
MOVQ $runtime·mainPC(SB), AX // entry // mainPC是runtime.mainPUSHQ AX  编程; // 将runtime.main函数地址入栈,作为参数CALL runtime·newproc(SB) // 创建main goroutine,入参就是runtime.mainPOPQ AX
以上代码创建了一个新的协程(在Go
中,go func()
之类的相当于调用runtime.newproc
),这个协程就是main goroutine
,那我们就看看runtime·newproc
函数做了什么。
// Create a new g running fn. // Put it on the queue of g's waiting to run. // The compiler turns a go statement into a call to this. func newproc(fn *funcval) { gp := getg() // 获取正在运行的g,初始化时是m0.g0 pc := getcallerpc() // 返回的是调用newproc函数时由call指令压栈的函数的返回地址,即上面汇编语言的第5行`POPQ AX`这条指令的地址 systemstack(func() { // systemstack函数的作用是切换到系统栈来执行其参数函数,也就是`g0`栈,这里当然就是m0.g0,所以基本不需要做什么 newg := newproc1(fn, gp, pc) _p_ := getg().m.p.ptr() runqput(_p_, newg, true) if mainStarted { wakep() } }) }
所以以上代码的重点就是调用newproc1
函数进行协程的创建。
// Create a new g in state _Grunnable, starting at fn. callerpc is the // address of the go statement that created this. The caller is responsible // for adding the new g to the scheduler. func newproc1(fn *funcval, callergp *g, callerpc uintptr) *g { _g_ := getg() // _g_ = g0,即m0.g0 if fn == nil { _g_.m.throwing = -1 // do not dump full stacks throw("go of nil func value") } acquirem() // disable preemption because it can be holding p in a local var _p_ := _g_.m.p.ptr() newg := gfget(_p_) // 从本地的已经废弃的g列表中获取一个g先,此时才刚初始化,所以肯定返回nil if newg == nil { newg = malg(_StackMin) // new一个g的结构体对象,然后在堆上分配2k的栈大小,并设置stack和stackguard0/1 casgstatus(newg, _Gidle, _Gdead) allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn'XHyRxaLmt look at uninitialized stack. } if newg.stack.hi == 0 { throw("newproc1: newg missing stack") } if readgstatus(newg) != _Gdead { throw("newproc1: new g is not Gdead") } // 调整栈顶指针 totalSize := uintptr(4*goarch.PtrSize + sys.MinFrameSize) // extra space in case of reads slightly beyond frame totalSize = alignUp(totalSize, sys.StackAlign) sp := newg.stack.hi - totalSize spArg := sp if usesLR { // caller's LR *(*uintptr)(unsafe.Pointer(sp)) = 0 prepGoExitFrame(sp) spArg += sys.MinFrameSize } ... }
上述代码从堆上分配了一个g
的结构体,并且在堆上为其分配了一个2k大小的栈,并设置了好了newg
的stack
等相关参数。此时,newg
的状态如图所示:
接着我们继续分析newproc1
函数:
memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched)) newg.sched.sp = sp // 设置newg的栈顶 newg.stktopsp = sp // newg.sched.pc表示当newg运行起来时的运行起始位置,下面一段是类似于代码注入,就好像每个go func() // 函数都是由goexit函数引起的一样,以便后面当newg结束后, // 完成newg的回收(当然这里main goroutine结束后进程就结束了,不会被回收)。 newg.sched.pc = abi.FuncPCABI0(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function newg.sched.g = guintptr(unsafe.Pointer(newg)) gostartcallfn(&newg.sched, fn) // 调整sched成员和newg的栈 newg.gopc = callerpc newg.ancestors = saveAncestors(callergp) newg.startpc = fn.fn if isSystemGoroutine(newg, false) { atomic.Xadd(&sched.ngsys, +1) } else { // Only user goroutines inherit pprof labels. if _g_.m.curg != nil { newg.labels = _g_.m.curg.labels } }
以上代码对newg
的sched
成员进行初始化,其中newg.sched.sp
表示其被调度起来后应该使用的栈顶,newg.sched.pc
表示其被调度起来从这个地址开始运行,但是这个值被设置成了goexit
函数的下一条指令,所以我们看看,在gostartcallfn
函数中,到底做了什么才能实现此功能:
// adjust Gobuf as if it executed a call to fn // and then stopped before the first instruction in fn. func gostartcallfn(gobuf *gobuf, fv *funcval) { var fn unsafe.Pointer if fv != nil { fn = unsafe.Pointer(fv.fn) } else { fn = unsafe.Pointer(abi.FuncPCABIInternal(nilfunc)) } gostartcall(gobuf, fn, unsafe.Pointer(fv)) } // sys_x86.go // adjust Gobuf as if it executed a call to fn with context ctxt // and then stopped before the first instruction in fn. func gostartcall(buf *gobuf, fn, ctxt unsafe.Pointer) { sp := buf.sp sp -= goarch.PtrSize *(*uintptr)(unsafe.Pointer(sp)) = buf.pc // 插入goexit的第二条指令,返回时可以调用 buf.sp = sp buf.pc = uintptr(fn) // 此时才是真正地设置pc buf.ctxt = ctxt }
以上操作的目的就是:
- 调整
newg
的栈空间,把goexit函数的第二条指令的地址入栈,伪造成goexit函数调用了fn,从而使fn执行完成后执行ret指令时返回到goexit继续执行完成最后的清理工作; - 重新设置newg.buf.pc 为需要执行的函数的地址,即fn,此场景为runtime.main函数的地址。
接下来会设置newg
的状态为runnable
;最后别忘了newproc
函数中还有几行:
newg := newproc1(fn, gp, pc) _p_ := getg().m.p.ptr() runqput(_p_, newg, true) if mainStarted { wakep() }
在创建完newg
后,将http://www.devze.com其放到此线程的g0
(这里是m0.g0
)所在的runq
队列,并且优先插入到队列的前端(runqput
第三个参数为true),做完这些后,我们可以得出以下的关系:
2. 调度main goroutine
上一节我们分析了main goroutine
的创建过程,这一节我们讨论一下,调度器如何把main goroutine
调度到CPU上去运行。让我们继续回到runtime/asm_amd64.s
中,在完成runtime.newproc
创建完main goroutine
之后,正式执行runtime·mstart
来执行,而runtime·mstart
最终会调用go写的runtime·mstart0
函数。
// start this M
CALL runtime·mstart(SB)CALL runtime·abort(SB) // mstart should never returnRET
TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0
CALL runtime·mstart0(SB) RET // not reached
runtime·mstart0
函数如下:
func mstart0() { _g_ := getg() // _g_ = &g0 osStack := _g_.stack.lo == 0 if osStack { // g0的stack.lo已经初始化,所以不会走以下逻辑 // Initialize stack bounds from system stack. // Cgo may have left stack size in stack.hi. // minit may update the stack bounds. // // Note: these bounds may not be very accurate. // We set hi to &size, but there are things above // it. The 1024 is supposed to compensate this, // but is somewhat arbitrary. size := _g_.stack.hi if size == 0 { size = 8192 * sys.StackGuardMultiplier } _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size))) _g_.stack.lo = _g_.stack.hi - size + 1024 } // Initialize stack guard so that we can start calling regular // Go code. _g_.stackguard0 = _g_.stack.lo + _StackGuard // This is the g0, so we can also call go:systemstack // functions, which check stackguard1. _g_.stackguard1 = _g_.stackguard0 mstart1() // Exit this thread. if mStackIsSystemAllocated() { // Windows, Solaris, illumos, Darwin, AIX and Plan 9 always system-allocate // the stack, but put it in _g_.stack before mstart, // so the logic above hasn't set osStack yet. osStack = true } mexit(osStack) }
以上代码设置了一些栈信息开发者_Python学习之后,调用runtime.mstart1
函数:
func mstart1() { _g_ := getg() // _g_ = &g0 if _g_ != _g_.m.g0 { // _g_ = &g0 throw("bad runtimemstart") } // Set up m.g0.sched as a label returning to just // after the mstart1 call in mstart0 above, for use by goexit0 and mcall. // We're never coming back to mstart1 after we call schedule, // so other calls can reuse the current frame. // And goexit0 does a gogo that needs to return from mstart1 // and let mstart0 exit the thread. _g_.sched.g = guintptr(unsafe.Pointer(_g_)) _g_.sched.pc = getcallerpc() // getcallerpc()获取mstart1执行完的返回地址 _g_.sched.sp = getcallersp() // getcallersp()获取调用mstart1时的栈顶地址 asminit() minit() // 信号相关初始化 // Install signal handlers; after minit so that minit can // prepare the thread to be able to handle the signals. if _g_.m == &m0 { mstartm0() } if fn := _g_.m.mstartfn; fn != nil { fn() } if _g_.m != &m0 { acquirep(_g_.m.nextp.ptr()) _g_.m.nextp = 0 } schedule() }
可以看到mstart1
函数保存额调度相关的信息,特别是保存了正在运行的g0
的下一条指令和栈顶地址, 这些调度信息对于goroutine
而言是很重要的。
接下来就是golang
调度系统的核心函数runtime.schedule
了:
func schedule() { _g_ := getg() // _g_ 是每个工作线程的m的m0,在初始化的场景就是m0.g0 ... var gp *g var inheritTime bool ... if gp == nil { // 为了保证调度的公平性,每进行61次调度就需要优先从全局队列中获取goroutine // Check the global runnable queue once in a while to ensure fairness. // Otherwise two goroutines can completely occupy the local runqueue // by constantly respawning each other. if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 { lock(&sched.lock) gp = globrunqget(_g_.m.p.ptr(), 1) unlock(&sched.lock) } } if gp == nil { // 从p本地的队列中获取goroutine gp, inheritTime = runqget(_g_.m.p.ptr()) // We can see gp != nil here even if the M is spinning, // if checkTimers added a local goroutine via goready. } if gp == nil { // 如果以上两者都没有,那么就需要从其他p哪里窃取goroutine gp, inheritTime = findrunnable() // blocks until work is available } ... execute(gp, inheritTime) }
以上我们节选了一些和调度相关的代码,意图简化我们的理解,调度中获取goroutine
的规则是:
- 每调度61次就需要从全局队列中获取
goroutine
; - 其次优先从本P所在队列中获取
goroutine
; - 如果还没有获取到,则从其他P的运行队列中窃取
goroutine
;
最后调用runtime.excute
函数运行代码:
func execute(gp *g, inheritTime bool) { _g_ := getg() // Assign gp.m before entering _Grunning so running Gs have an // M. _g_.m.curg = gp gp.m = _g_.m casgstatus(gp, _Grunnable, _Grunning) // 设置gp的状态 gp.waitsince = 0 gp.preempt = false gp.stackguard0 = gp.stack.lo + _StackGuard ... gogo(&gp.sched) }
在完成gp
运行前的准备工作后,excute
函数调用gogo
函数完成从g0
到gp
的转换:
- 让出CPU的执行权;
- 栈的切换;
gogo
函数是用汇编语言编写的精悍的一段代码,这里就不详细分析了,其主要做了两件事:
- 把
gp.sched
的成员恢复到CPU的寄存器完成状态以及栈的切换; - 跳转到
gp.sched.pc
所指的指令地址(runtime.main
)处执行。
func main() { g := getg() // _g_ = main_goroutine // Racectx of m0->g0 is used only as the parent of the main goroutine. // It must not be used for anything else. g.m.g0.racectx = 0 // golang栈的最大值 // Max stack size is 1 GB on 64-bit, 250 MB on 32-bit. // Using decimal instead of binary GB and MB because // they look nicer in the stack overflow failure message. if goarch.PtrSjavascriptize == 8 { maxstacksize = 1000000000 } else { maxstacksize = 250000000 } // An upper limit for max stack size. Used to avoid random crashes // after calling SetMaxStack and trying to allocate a stack that is too big, // since stackalloc works with 32-bit sizes. maxstackceiling = 2 * maxstacksize // Allow newproc to start new Ms. mainStarted = true // 需要切换到g0栈去执行newm // 创建监控线程,该线程独立于调度器,无需与P关联 if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon systemstack(func() { newm(sysmon, nil, -1) }) } // Lock the main goroutine onto this, the main OS thread, // during initialization. Most programs won't care, but a few // do require certain calls to be made by the main thread. // Those can arrange for main.main to run in the main thread // by calling runtime.LockOSThread during initialization // to XHyRxaLmpreserve the lock. lockOSThread() if g.m != &m0 { throw("runtime.main not on m0") } // Record when the world started. // Must be before doInit for tracing init. runtimeInitTime = nanotime() if runtimeInitTime == 0 { throw("nanotime returning zero") } if debug.inittrace != 0 { inittrace.id = getg().goid inittrace.active = true } // runtime包的init doInit(&runtime_inittask) // Must be before defer. // Defer unlock so that runtime.Goexit during init does the unlock too. needUnlock := true defer func() { if needUnlock { unlockOSThread() } }() gcenable() main_init_done = make(chan bool) if iscgo { if _cgo_thread_start == nil { throw("_cgo_thread_start missing") } if GOOS != "windows" { if _cgo_setenv == nil { throw("_cgo_setenv missing") } if _cgo_unsetenv == nil { throw("_cgo_unsetenv missing") } } if _cgo_notify_runtime_init_done == nil { throw("_cgo_notify_runtime_init_done missing") } // Start the template thread in case we enter Go from // a C-created thread and need to create a new thread. startTemplateThread() cgocall(_cgo_notify_runtime_init_done, nil) } doInit(&main_inittask) // main包的init,会递归调用import的包的初始化函数 // Disable init tracing after main init done to avoid overhead // of collecting statistics in malloc and newproc inittrace.active = false close(main_init_done) needUnlock = false unlockOSThread() if isarchive || islibrary { // A program compiled with -buildmode=c-archive or c-shared // has a main, but it is not executed. return } fn := main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime fn() // 执行main函数 if raceenabled { racefini() } // Make racy client program work: if panicking on // another goroutine at the same time as main returns, // let the other goroutine finish printing the panic trace. // Once it does, it will exit. See issues 3934 and 20018. if atomic.Load(&runningPanicDefers) != 0 { // Running deferred functions should not take long. for c := 0; c < 1000; c++ { if atomic.Load(&runningPanicDefers) == 0 { break } Gosched() } } if atomic.Load(&panicking) != 0 { gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1) } exit(0) for { var x *int32 *x = 0 } }
runtime.main
函数的主要工作是:
- 启动一个
sysmon
系统监控线程,该线程负责程序的gc、抢占调度等; - 执行
runtime
包和所有包的初始化; - 执行
main.main
函数; - 最后调用
exit
系统调用退出进程,之前提到的注入goexit
程序对main goroutine
不起作用,是为了其他线程的回收而做的。
以上就是Golang并发编程之main goroutine的创建与调度详解的详细内容,更多关于Golang main goroutine的资料请关注我们其它相关文章!
精彩评论