开发者

Python数学建模StatsModels统计回归模型数据的准备

目录
  • 1、读取数据文件
    • (1)读取 .csv 文件:
    • (2)读取 .xls 文件:
    • (3)读取 .txt 文件:
  • 2、数据文件的拆分与合并
    • (1)将 Excel 文件分割为多个文件
    • (2)将 多个 Excel 文件合并为一个文件
  • 3、数据的预处理
    • (1)缺失数据的处理
    • (2)重复数据的处理
    • (3)异常值处理
  • 4、python 例程(Statsmodels)
    • 4.1 问题描述
    • 4.2 Python 程序
    • 4.3 程序运行结果:
  • 版权说明:

    1、读取数据文件

    回归分析问题所用的数据都是保存在数据文件中的,首先就要从数据文件读取数据。

    数据文件的格式很多,最常用的是 .csv,.xls 和 .txt 文件,以及 sql 数据库文件的读取 。

    使用 pandas 从数据文件导入数据的程序最为简单,示例如下:

    (1)读取 .csv 文件:

        df = pd.read_csv("./example.csv", engine="python", encoding="utf_8_sig")
        # engine="python"允许处理中文路径,encoding="utf_8_sig"允许读取中文数据
    
    

    (2)读取 .xls 文件:

    df = pd.read_excel("./example.xls", sheetname='Sheet1', header=0, encoding="utf_8_sig")
        # sheetname 表示读取的sheet,header=0 表示首行为标题行, encoding 表示编码方式
    

    (3)读取 .txt 文件:

        df = pd.read_table("./example.txt", sep="\t", header=None)
        # sep 表示分隔符,header=None表示无标题行,第一行是数据
    

    2、数据文件的拆分与合并

    统计回归所需处理的数据量可能非常大,必要时需对文件进行拆分或合并,也可以用 pandas 进行处理,示例如下:

    (1)将 Excel 文件分割为多个文件

        # 将 Excel 文件分割为多个文件
        import pandas as pd
        dfData = pd.read_excel('./example.xls', sheetname='Sheet1')
        nRow, nCol = dfData.shape  # 获取数据的行列
        # 假设数据共有198,000行,分割为 20个文件,每个文件 10,000行
        for i in range(0, int(nRow/10000)+1):
            saveData = dfData.iloc[i*10000+1:(i+1)*10000+1, :]  # 每隔 10,000
            fileName= './example_{}.xls'.format(str(i))
            saveData.to_excel(fileName, sheet_name = 'Sheet1', index = False)
    

    (2)将 多个 Excel 文件合并为一个文件

        # 将多个 Excel 文件合并为一个文件
        import pandas as pd
        ## 两个 Excel 文件合并
        #data1 = pd.read_excel('./example0.xls', sheetname='Sheet1')
        #data2 = pd.read_excel('./example1.xls', sheetname='Sheet1')
        #data = pd.concat([data1, data2])
        # 多个 Excel 文件合并
        dfData = pd.read_excel('./example0.xls', sheetname='Sheet1')
        for i in range(1, 20):
            fileName = './example_{}.xls'.format(str(i))
            dfNew = pd.read_excel(fileName)
            dfData = pd.concat([dfData, dfNew])
        dfData.to_excel('./example', index = False)
        # = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
    

    3、数据的预处理

    在实际工作中,在开始建立模型和拟合分析之前,还要对原始数据进行数据预处理(data preprocessing),主要包括:缺失值处理、重复数据处理、异常值处理、变量格式转换、训练集划分、数据的规范化、归一化等。

    数据预处理的很多内容已经超出了 Statsmodels 的范围,在此只介绍最基本的方法:

    (1)缺失数据的处理

    导入的数据存tGruas在缺失是经常发生的,最简单的处理方式是删除缺失的数据行。使用 pandwww.cppcns.comas 中的 .dropna() 删除含有缺失值的行或列,也可以 对特定的列进行缺失值删除处理 。

        dfNew = dfData.dropna(axis = 0))  # 删除含有缺失值的行
    

    有时也会填充缺失值或替换缺失值,在此就不做介绍了。 

    (2)重复数据的处理

    对于重复数据,通常会删除重复行。使用 pandas 中的 .duplicated() 可以查询重复数据的内容,使用 .drop_duplicated() 可以删除重复数据,也可以对指定的数据列进行去重。

        dfNew = dfData.drop_duplicates(inplace=True)  # 删除重复的数据行
    

    (3)异常值处理

    数据中可能包括异常值, 是指一个样本中的数值明显偏离样本集中其它样本的观测值,也称为离群点。异常值可以通过箱线图、正态分布图进行识别,也可以通过回归、聚类建模进行识别。

    箱线图技术是利用数据的分位数识别其中的异常点。箱形图分析也超过本文的内容,不能详细介绍了。只能笼统地说通过观察箱形图,可以查看整体的异常情况,进而发现异常值。

        dfData.boxplot()  # 绘制箱形图
    

    对于异常值通常不易直接删除,需要结合具体情况进行考虑和处理。使用 pandas 中的 .drop() 可以直接删除异常值数据行,或者使用判断条件来判定并删除异常值数据行。

        # 按行删除,drop() 默认 axis=0 按行删除
        dfNew = dfData.drop(labels=0)   # 按照行号 labels,删除 行号为 0 的行
        dfNew = dfData.drop(index=dfData[dfData['A']==-1].index[0])   # 按照条件检索,删除 dfData['A']=-1 的行
    

    4、Python 例程(Statsmodels)

    4.1 问题描述

    数据文件中收集了 30个月本公司牙膏销售量、价格、广告费用及同期的市场均价。

      (1)分析牙膏销售量与价格、广告投入之间的关系,建立数学模型;

      (2)估计所建立数学模型的参数,进行统计分析;

      (3)利用拟合模型,预测在不同价格和广告费用下的牙膏销售量。

    本问题及数据来自:姜启源、谢金星,数学模型(第 3版),高等教育出版社。

    需要说明的是,本文例程并不是问题最佳的求解方法和结果,只是使用该问题及数据示范读取数据文件和数据处理的方法。

    4.2 Python 程序

    # LinearRegression_v3.py
    # v1.0: 调用 statsmodels 实现一元线性回归
    # v2.0: 调用 statsmodels 实现多元线性回归
    # v3.0: 从文件读取数据样本
    # 日期:2021-05-06
    # Copyright 2021 YouCans, XUPT
    import numpy as np
    import pandas as pd
    import statsmodels.api as sm
    import matplotlib.pyplot as plt
    def main():
        # 读取数据文件
        readPath = "../data/toothpaste.csv"  # 数据文件的地址和文件名
        try:
            if (readPath[-4:] == ".csv"):
                dfOpenFile = pd.read_csv(readPath, header=0, sep=",")  # 间隔符为逗号,首行为标题行
                # dfOpenFile = pd.read_csv(filePath, header=None, sep=",")  # sep: 间隔符,无标题行
            elif (readPath[-4:] == ".xls") or (readPath[-5:] == ".xlsx"):  # sheet_name 默认为 0
                dfOpenFile = pd.read_excel(readPath, header=0)  # 首行为标题行
                # dfOpenFile = pd.read_excel(filePath, header=None)  # 无标题行
            elif (readPath[-4:] == ".dat"):  # swww.cppcns.comep: 间隔符,header:首行是否为标题行
                dfOpenFile = pd.read_table(readPath, sep=" ", header=0)  # 间隔符为空格,首行为标题行
                # dfOpenFile = pd.read_table(filePath,sep=",",header=None) # 间隔符为逗号,无标题行
            else:
                print("不支持的文件格式。")
            print(dfOpenFile.head())
        except Exception as e:
            print("读取数据文件失败:{}".format(str(e)))
            return
        # 数据预处理
        dfData = dfOpenFile.dropna()  # 删除含有缺失值的数据
        print(dfData.dtypes)  # 查看 df 各列的数据类型
        print(dfData.shape)  # 查看 df 的行数和列数
        # colNameList = dfData.columns.tolist()  # 将 df 的列名转换为列表 list
        # print(colNameList)  # 查看列名列表 list
        # featureCols = ['price', 'average', 'advertise', 'difference']  # 筛选列,建立自变量列名 list
        # X = dfData[['price', 'average', 'advertise', 'difference']]  # 根据自变量列名 list,建立 自变量数据集
        # 准备建模数据:分析因变量 Y(sales) 与 自变量 x1~x4  的关系
        y = dfData.sales  # 根据因变量列名 list,建立 因变量数据集
        x0 = np.ones(dfData.shape[0])  # 截距列 x0=[1,...1]
        x1 = dfData.price  # 销售价格
        x2 = dfData.average  # 市场均价
        x3 = dfData.advertise  # 广告费
        x4 = dfData.difference  # 价格差,x4 = x1 - x2
        X = np.column_stack((x0,x1,x2,x3,x4))  #[x0,x1,x2,...,x4]
        # 建立模型与参数估计
        # Model 1:Y = b0 + b1*X1 + b2*X2 + b3*X3 + b4*X4 + e
        model = sm.OLS(y, X)  # 建立 OLS 模型
        results = model.fit()  # 返回模型拟合结果
        yFit = results.fittedvalues  # 模型拟合的 y 值
        print(results.summary())  # 输出回归分析的摘要
        print("\nOLS model: Y = b0 + b1*X + ... + bm*Xm")
        print('Parameters: ', results.params)  # 输出:拟合模型的系数
        # 拟合结果绘图
        fig, ax = plt.subplots(figsize=(10, 8))
        ax.plot(range(len(y)), y, 'bo', label='sample')
        ax.plot(range(len(yFit)), yFit, 'r--', label='predict')
        ax.legend(loc='best')  # 显示图例
        plt.show()  # YouCans, XUPT
        return
    if __name__ == '__main__':
        main()
    
    

    4.3 程序运行结果:

       period  price  average  advertise  difference  sales
    0       1   3.85     3.80       5.50       -0.05   7.38
    1       2   3.75     4.00       6.75        0.25   8.51
    2       3   3.70     4.30       7.25        0.60   9.52
    3       4   3.70     3.70       5.50        0.00   7.50
    4       5   3.60     3.85       7.00        0.25   9.33
    OLS Regression RetGruassults                            
    ==============================================================================
    Dep. Variable:                  sales   R-squared:                       0.895
    Model:                            OLS   Adj. R-squared:                  0.883
    Method:                 Least Squares   F-statistic:                     74.20
    Date:                Fri, 07 May 2021   Prob (F-statistic):           7.12e-13
    Time:                        11:51:52   Log-Likelihood:                 3.3225
    No. Observations:                  30   AIC:                             1.355
    Df Residuals:                      26   BIC:                             6.960
    Df Model:                           3                                         
    Covariance Type:            nonrobust                                         
    ==============================================================================
                     coef    std err          t      P>|t|      [0.025      0.975]
    ------------------------------------------------------------------------------
    const          8.0368      2.480      3.241      0.003       2.940      13.134
    x1            -1.1184      0.398     -2.811      0.009      -1.936      -0.300
    x2             0.2648      0.199      1.332      0.195      -0.144       0.674
    x3             0.4927      0.125      3.938      0.001       0.236       0.750
    x4             1.3832      0.288      4.798      0.000       0.791       1.976
    ==============================================================================
    Omnibus:                        0.141   Durbin-Watson:                   1.762
    Prob(Omnibus):                  0.932   Jarque-Bera (JB):                0.030
    Skew:                           0.052   Prob(JB):                        0.985
    Kurtosis:                       2.885   Cond. No.                     2.68e+16
    ===========www.cppcns.com===================================================================
    OLS model: Y = b0 + b1*X + ... + bm*Xm
    Parameters:  const    8.036813
    x1      -1.118418
    x2       0.264789
    x3       0.492728
    x4       1.383207
    
    

    Python数学建模StatsModels统计回归模型数据的准备

    版权说明:

    本问题及数据来自:姜启源、谢金星,数学模型(第 3版),高等教育出版社

    本文内容及例程为作者原创,并非转载书籍或网络内容。

    以上就是Python数学建模StatsModels统计回归模型数据的准备的详细内容,更多关于数学建模StatsModels统计回归模型数据准备的资料请关注我们其它相关文章!

    0

    上一篇:

    下一篇:

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    最新开发

    开发排行榜