开发者

Python时间序列的实现

目录
  • 1. datetime模块
    • 1.1 datetime对象
    • 1.2 字符串和datatime的相互转换
  • 2. 时间序列基础
    • 3. 重采样及频率转换
      • 4. 时间序列可视化
        • 5. 窗口函数
          • 5.1 移动窗口函数
          • 5.2 指数加权函数
          • 5.3 二元移动窗口函数

        时间序列(Time Series)是一种重要的结构化数据形式。时间序列的数据意义取决于具体的应用场景,主要有以下几种:

        • 时间戳(timestamp):特定的时刻
        • 固定时期(period):2007年1月或2010年全年
        • 时间间隔(interval):由起始和结束时间戳表示。时期(period)可以被看作间隔的特例。

        1. datetime模块

        1.1 datetime对象

        datetime.datetime对象(以下简称datetime对象)以毫秒形式存储日期和时间。datetime.timedelta表示datetime对象之间的时间差。

        import pandas as pd
        import numpy as np
        from datetime import datetime,timedelta
        %matplotlib inline
        now = datetime.javascriptnow() #now为datetime.datetime对象
        
        now

        输出:

        datetime.datetime(2019, 10, 11, 15, 33, 5, 701305)

        now.year,now.month,now.day

        输出:

        (2019, 10, 11)

        delta = datetime.now()-datetime(2019,1,1) #delta为datetime.timedelta对象
        datetime.now() + timedelta(12)

        输出:

        datetime.datetime(2023, 3, 10, 22, 13, 25, 3470)

        1.2 字符串和datatime的相互转换

        (1) 利用strdatetime.strftime方法(传入一个格式化字符串),datetime对象和pandas的Timestamp对象可以被格式化为字符串;datetime.strptime可以将字符串转换为日期。

        stamp = datetime(2011,1,3)
        stamp.strftime('%Y-%m-%d') #或str(stamp)
        

        输出:

        ‘2011-01-03’

        datetime.strptime('2019-10-01','%Y-%m-%d')

        输出:

        datetime.datetime(2019, 10, 1, 0, 0)

        (2) 对于一些常见的日期格式,可以使用datautil中的parser.parse方法(不支持中文)

        from dateutil.parse编程客栈r import parse
        parse('2019-10-01') #形成datetime.datetime对象
        

        输出:

        datetime.datetime(2019, 10, 1, 0, 0)

        (3) pandas的to_datetime方法可以解析多种不同的日期表示形式

        import pandas as pd
        datestrs = ['7/6/2019','8/6/2019']
        dates = pd.to_datetime(datestrs) #将字符串列表转换为Timephpstamp对象
        type(dates)

        输出:

        pandas.core.indexes.datetimes.DatetimeIndex

        dates[0]

        输出:

        Timestamp(‘2019-07-06 00:00:00’)

        2. 时间序列基础

        pandas最基本的时间序列类型就是以时间戳(通常以python字符串或datetime对象表示)为索引的Series。

        时期(period)表示的是时间时区,比如数日、数月、数季、数年等。

        from datetime import datetime
        
        dates = [datetime(2019,1,1),datetime(2019,1,2),datetime(2019,1,5),datetime(2019,1,10),datetime(2019,2,10),datetime(2019,10,1)]
        
        ts = pd.Series(np.random.randn(6),index = dates) #ts就成为一个时间序列,datetime对象实际上是被存放在一个DatetimeIndex中
        
        ts

        输出:

        2019-01-01 1.175755

        2019-01-02 -0.520842

        2019-01-05 -0.678080

        2019-01-10 0.195213

        2019-02-10 2.201572

        2019-10-01 0.115911

        dtype: float64

        dates = pd.DatetimeIndex(['2019/01/01','2019/01/02','2019/01/02','2019/5/01','3/15/2019']) #同一时间点上多个观测数据
        dup_ts = pd.Series(np.arange(5),index = dates)
        dup_ts

        输出:

        2019-01-01 0

        2019-01-02 1

        2019-01-02 2

        2019-05-01 3

        2019-03-15 4

        dtype: int32

        dup_ts.groupby(level = 0).count()

        输出:

        2019-01-01 1

        2019-01-02 2

        2019-03-15 1

        2019-05-01 1

        dtype: int64

        pd.date_range可用于生成指定长度的DatetimeIndex

        pd.date_range('2019/01/01','2019/2/1') #默认情况下产生按天计算的时间点。

        输出:

        DatetimeIndex([‘2019-01-01’, ‘2019-01-02’, ‘2019-01-03’, ‘2019-01-04’,

        ‘2019-01-05’, ‘2019-01-06’, ‘2019-01-07’, ‘2019-01-08’,

        ‘2019-01-09’, ‘2019-01-10’, ‘2019-01-11’, ‘2019-01-12’,

        ‘2019-01-13’, ‘2019-01-14’, ‘2019-01-15’, ‘2019-01-16’,

        ‘2019-01-17’, ‘2019-01-18’, ‘2019-01-19’, ‘2019-01-20’,

        ‘2019-01-21’, ‘2019-01-22’, ‘2019-01-23’, ‘2019-01-24’,

        ‘2019-01-25’, ‘2019-01-26’, ‘2019-01-27’, ‘2019-01-28’,

        ‘2019-01-29’, ‘2019-01-30’, ‘2019-01-31’, ‘2019-02-01’],

        dtype=‘datetime64[ns]’, freq=‘D’)

        pd.date_range('2010/01/01',periods = 30) # 传入起始或结束日期及一个表示时间段的数字。

        输出:

        DatetimeIndex([‘2010-01-01’, ‘2010-01-02’, ‘2010-01-03’, ‘2010-01-04’,

        ‘2010-01-05’, ‘2010-01-06’, ‘2010-01-07’, ‘2010-01-08’,

        ‘2010-01-09’, ‘2010-01-10’, ‘2010-01-11’, ‘2010-01-12’,

        ‘2010-01-13’, ‘2010-01-14’, ‘2010-01-15’, ‘2010-01-16’,

        ‘2010-01-17’, ‘2010-01-18’, ‘2010-01-19’, ‘2010-01-20’,

        ‘2010-01-21’, ‘2010-01-22’, ‘2010-01-23’, ‘2010-01-24’,

        ‘2010-01-25&rsqpythonuo;, ‘2010-01-26’, ‘2010-01-27’, ‘2010-01-28’,

        ‘2010-01-29’, ‘2010-01-30’],

        dtype=‘datetime64[ns]’, freq=‘D’)

        pd.date_range('2010/01/01','2010/12/1',freq = 'BM') 
        #传入BM(business end of month),生成每个月最后一个工作日组成的日期索引

        输出:

        DatetimeIndex([‘2010-01-29’, ‘2010-02-26’, ‘2010-03-31’, ‘2010-04-30’,

        ‘2010-05-31’, ‘2010-06-30’, ‘2010-07-30’, ‘2010-08-31’,

        ‘2010-09-30’, ‘2010-10-29’, ‘2010-11-30’],

        dtype=‘datetime64[ns]’, freq=‘BM’)

        pd.Series(np.arange(13),index = pd.date_range('2010/01/01','2010/1/3',freq = '4h'))

        输出:

        2010-01-01 00:00:00 0

        2010-01-01 04:00:00 1

        2010-01-01 08:00:00 2

        2010-01-01 12:00:00 3

        2010-01-01 16:00:00 4

        2010-01-01 20:00:00 5

        2010-01-02 00:00:00 6

        2010-01-02 04:00:00 7

        2010-01-02 08:00:00 8

        2010-01-02 12:00:00 9

        2010-01-02 16:00:00 10

        2010-01-02 20:00:00 11

        2010-01-03 00:00:00 12

        Freq: 4H, dtype: int32

        period_range可用于创建规则的时期范围

        pd.Series(np.arange(10),index = pd.period_range('2019/1/1','2019/10/01',freq='M'))

        输出:

        2019-01 0

        2019-02 1

        2019-03 2

        2019-04 3

        2019-05 4

        2019-06 5

        2019-07 6

        2019-08 7

        2019-09 8

        2019-10 9

        Freq: M, dtype: int32

        3. 重采样及频率转换

        重采样(resampling)指的是将时间序列从一个频率转换到另一个频率的处理过程。

        • 降采样(downsampling):将高频率数据聚合到低频率数据
        • 升采样(upsampling):将低频率数据开发者_Python转换到高频率
        rng = pd.date_range('2019/01/01',periods = 100,freq='D')
        ts = pd.Series(np.random.randn(len(rng)),index=rng)
        ts.resample('M').mean()

        输出:

        2019-01-31 0.011565

        2019-02-28 -0.185584

        2019-03-31 -0.323621

        2019-04-30 0.043687

        Freq: M, dtype: float64

        ts.resample('M',kind='period').mean()

        输出:

        2019-01 0.011565

        2019-02 -0.185584

        2019-03 -0.323621

        2019-04 0.043687

        Freq: M, dtype: float64

        rng = pd.date_range('2019/01/01',periods = 12,freq='T')
        ts = pd.Series(np.random.randn(len(rng)),index=rng)
        ts.resample('5min').sum()
        

        输出:

        2019-01-01 00:00:00 1.625143

        2019-01-01 00:05:00 2.588045

        2019-01-01 00:10:00 2.447725

        Freq: 5T, dtype: float64

        金融领域中有种时间序列聚合方式,称为OHLC重采样,即计算各面元的四个值:

        • Open:开盘
        • High:最高值
        • Low:最小值
        • Close:收盘

        输出:

        openhighlowclose
        2019-01-01 00:00:00-0.3459521.120258-0.3459521.120258
        2019-01-01 00:05:00-0.1061972.448439-1.014186-1.014186
        2019-01-01 00:10:001.4450361.4450361.0026881.002688

        另一种降采样的办法是实用pandas的groupby方法。

        rng = pd.date_range('2019/1/1',periods = 100,freq='D')
        ts = pd.Series(np.arange(len(rng)), index = rng)
        
        ts.resample('m').mean()

        输出:

        2019-01-31 15.0

        2019-02-28 44.5

        2019-03-31 74.0

        2019-04-30 94.5

        Freq: M, dtype: float64

        ts.groupby(lambda x:x.month).mean()

        输出:

        1 15.0

        2 44.5

        3 74.0

        4 94.5

        dtype: float64

        4. 时间序列可视化

        需要加载stock.csv文件,该文件格式如下:

        AAAAPLGEIBMJNJMSFTPEPSPXXOM
        1990/2/1 0:004.987.862.8716.794.270.516.04328.796.12
        1990/2/2 0:005.0482.8716.894.370.516.09330.926.24
        1990/2/5 0:005.078.182.8717.324.340.516.05331.856.25
        1990/2/6 0:005.018.122.8817.564.320.516.15329.666.23
        1990/2/7 0:005.047.772.9117.934.380.516.17333.756.33
        close_px_all = pd.read_csv('datasets/stock.csv',parse_dates = True, index_col=0)
        close_px = close_px_all[['AAPL','MSFT','XOM']]
        close_px.plot()  #'AAPL','MSFT','XOM'股价变化
        

        Python时间序列的实现

        close_px.resample('B').ffill().plot()  #填充工作日后,股价变化

        Python时间序列的实现

        close_px.AAPL.loc['2011-01':'2011-03'].plot() #苹果公司2011年1月到3月每日股价

        Python时间序列的实现

        close_px.AAPL.loc['2011-01':'2011-03'].plot() #苹果公司2011年1月到3月每日股价

        Python时间序列的实现

        5. 窗口函数

        5.1 移动窗口函数

        移动窗口函数(moving window function)指在移动窗口(可带指数衰减权数)上计算的各种统计函数,也包括窗口不定长的函数(如指数加权移动平均)。 与其他统计函数一样,移动窗口函数会自动排除缺失值。

        close_px.AAPL.plot()
        close_px.AAPL.rolling(250).mean().plot()   #250日均线
        

        Python时间序列的实现

        close_px.rolling(250).mean().plot(logy=True)   #250日均线 对数坐标

        Python时间序列的实现

        close_px.AAPL.rolling(250,min_periods=10).std().plot()  #标准差

        Python时间序列的实现

        5.2 指数加权函数

        指数加权函数:定义一个衰减因子(decay factor),以赋予近期的观测值拥有更大的权重。衰减因子常用时间间隔(span),可以使结果兼容于窗口大小等于时间间隔的简单移动窗口(simple moving window)函数。

        appl_px = close_px.AAPL['2005':'2009']
        mapython60 = appl_px.rolling(60,min_periods=50).mean()  #60日移动平均 
        ewma60 = appl_px.ewm(span = 60).mean()           #60日指数加权移动平均
        
        appl_px.plot()
        ma60.plot(c='g',style='k--')
        ewma60.plot(c='r',style='k--')  #相对于普通移动平均,能“适应”更快的变化
        

        Python时间序列的实现

        5.3 二元移动窗口函数

        相关系数和协方差等统计运算需要在两个时间序列上执行,如某只股票对某个参考指数(如标普500)的相关系数。

        aapl_rets = close_px_all.AAPL['1992':].pct_change()
        spx_rets = close_px_all.SPX.pct_change()
        corr = aapl_rets.rolling(125,min_periods=100).corr(spx_rets) #APPL6个月回报与标准普尔500指数的相关系数
        corr.plot()
        

        Python时间序列的实现

        all_rets = close_px_all[['AAPL','MSFT','XOM']]['2003':].pct_change()
        corr = all_rets.rolling(125,min_periods=100).corr(spx_rets) #3支股票月回报与标准普尔500指数的相关系数
        corr.plot()
        

        Python时间序列的实现

        到此这篇关于Python时间序列的实现的文章就介绍到这了,更多相关Python时间序列内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

        0

        上一篇:

        下一篇:

        精彩评论

        暂无评论...
        验证码 换一张
        取 消

        最新开发

        开发排行榜