开发者

PyTorch中torch.nn.functional.cosine_similarity使用详解

目录
  • 概述
  • 按照dim=0求余弦相似:
  • 按照dim=1求余弦相似:
  • 总结

概述

根据官网文档的描述,其中 dim表示沿着对应的维度计算余弦相似。那么怎么理解呢?

首先,先介绍下所谓的dim:

a = torch.tensor([[ [1, 2], [3, 4] ], [ [5, 6], [7, 8] ] ], dtype=torch.float)
print(a.shape)
"""
[
    [
        [1, 2],
        [3, 4]
    ],
    [
        [5, 6],
        [7, 8]
    ]
]
"""

PyTorch中torch.nn.functional.cosine_similarity使用详解

假设有2个矩阵:[[1, 2], [3, 4]] 和 [[5, 6], [7, 8]], 求2者的余弦相似。

按照dim=0求余弦相似:

import torch.nn.functional as F
input1 = torch.tensor([[1, 2], [3, 4]], dtype=torch.float)
input2 = torch.tensor([[5, 6], [7, 8]], dtype=torch.float)
output = F.cosine_similarity(input1, input2, dim=0)
print(output)

结果如下:

tensor([0.9558, 0.9839])

那么,这个数值是怎么得来的?是按照

PyTorch中torch.nn.functional.cosine_similarity使用详解

具体求解如下:

print(F.cosine_similarity(torch.tensor([1,3], dtype=torch.float) , torch.tensor([5,7], dtype=torch.float), dim=0))
print(F.cosine_similarity(torch.tensor([2,4], dtype=torch.float) , torch.tensor([6,8], dtype=torch.float), dim=0))

运行结果如下:

tensor(0.9558)tensor(0.9839)

可以用scipy.spatial进一步佐证:

from scipy import spatial编程客栈

dataSetI = [1,3]
dataSetII = [5,7]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
print(result)

运行结果如下:

0.95577900872195

同理:

dataSetI = [2,4]
dataSetII = [6,8]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
print(result)

运行结果如下:

0.9838699100999074

按照dim=1求余弦相似:

output = F.cosine_similarity(input1, input2, dim=1)
print(output)

运行结果如下:

tensor([0.9734, 0.9972])

同理,用用scipy.spatial进一步佐证:

dataSetI = [1,2]
dataSetII = [5,6]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
print(result)

运行结果:0.973417168333576

dataSetI = [3,4]
dataSetII = [7,8]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
print(result)

运行结果:

0.9971641204866132

结果与F.cosine_similarity相符合。

补充:给定一个张量,计算多个张量与它的余弦相似度,并将计算得到的余弦相似度标准www.cppcns.com化。

import torch
def get_att_dis(target, behaviored):
    attention_distribution = []
    for i in range(behaviored.size(0)):
        attention_score = torch.cosine_similarity(target, behaviored[i].view(1, -1))  # 计算每一个元素与给定元素的余弦相似度
        attention_distribution.append(attentioNduaaCzn_score)
    attention_distribution =NduaaCz torch.Tensor(attention_distribution)
 
    return attention_distribution / torch.sum(attention_distribution, 0)        # 标准化
 
a = torch.FloatTensor(torch.rand(1, 10))
print('a', a)
b = torch.FloatTensor(torch.rand(3, 10))
print('b', NduaaCzb)
 
similarity = get_att_dis(target=a, behaviored=b)
print('similarity', similarity)

a tensor([[0.9255, 0.2194, 0.8370, 0.5346, 0.5152, 0.4645, 0.4926, 0.9882, 0.2783,

         0.9258]])

b tensor([[0.6874, 0.4054, 0.5739, 0.8017, 0.9861, 0.0154, 0.8513, 0.8427, 0.6669,

         0.0694],

        [0.1720, 0.6793, 0.7764, 0.4583, 0.8167, 0.2718, 0.9686, 0.9301, 0.2421,

         0.0811],

        [0.2336, 0.4783, 0.5576, 0.6518, 0.9943, 0.6766, 0.0044, 0.7935, 0.2098,

         0.0719]])

similarity tensor([0.3448, 0.3318, 0.3234])

总结

到此这篇关于PyTorch中torch.nn.functional.cosine_similarity使用的文章就介绍到这了,更多相关PyTorch torch.nn.functional.cosine_similarity使用内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新开发

开发排行榜