开发者

基于Matlab实现人工神经网络(ANN)回归的示例详解

目录
  • 1 分解代码
    • 1.1 循环准备
    • 1.2 神经网络构建
    • 1.3 数据处理
    • 1.4 模型训练参数配置
    • 1.5 神经网络实现
    • 1.6 精度衡量
    • 1.7 保存模型
  • 2 完整代码

    在之前的文章MATLAB实现随机森林(RF)回归与自变量影响程度分析中,我们对基于MATLAB随机森林(RF)回归与变量影响程度(重要性)排序的代码加以详细讲解与实践。本次我们继续基于MATLAB,对另一种常用的机器学习方法——神经网络方法加以代码实战。

    首先需要注明的是,在MATLAB中,我们可以直接基于“APP”中的“Neural Net Fitting”工具箱实现在无需代码的情况下,对神经网络算法加以运行。

    基于Matlab实现人工神经网络(ANN)回归的示例详解

    基于工具箱的神经网络方法虽然方便,但是一些参数不能调整;同时也不利于我们对算法、代码的理解。因此,本文不利用“Neural Net Fitting”工具箱,而是直接通过代码将神经网络方法加以运行——但是,本文的代码其实也是通过上述工具箱运行后生成的;而这种生成神经网络代码的方法也是MATLAB官方推荐的方式。

    另外,需要注意的是,本文直接进行神经网络算法的执行,省略了前期数据处理、训练集与测试集划分、精度衡量指标选取等。因此建议大家先将文章MATLAB实现随机森林(RF)回归与自变量影响程度分析阅读后,再阅读本文。

    本文分为两部分,首先是将代码分段、详细讲解,方便大家理解;随后是完整代码,方便大家自行尝试。

    1 分解代码

    1.1 循环准备

    由于机器学习往往需要多次执行,我们就在此先定义循环。

    %% ANN Cycle Preparation
    
    ANNRMSE=9999;
    ANNRunNum=0;
    ANNRMSEMatrix=[];
    ANNrAllMatrix=[];
    while ANNRMSE>400
    

    其中,ANNRMSE是初始的RMSEANNRunNum是神经网络算法当前运行的次数;ANNRMSEMatrix用来存储每一次神经网络运行后所得到的RMSE结果;ANNrAllMatrix用来存储每一次神经网络运行后所得到的皮尔逊相关系数结果;最后一句表示当所得到的模型RMSE>400时,则停止循环。

    1.2http://www.devze.com 神经网络构建

    接下来,我们对神经网络的整体结构加以定义。

    %% ANN
    
    x=TrainVARI';
    t=TrainYield';
    trainFcn = 'trainlm';
    hiddenLayerSize = [10 10 10];
    ANNnet = fitnet(hiddenLayerSize,trainFcn);
    

    其中,TrainVARITrainYield分别是我这里训练数据的自变量(特征)与因变量(标签);trainFcn为神经网络所选用的训练函数方法名称,其名称与对应的方法对照如下表:

    基于Matlab实现人工神经网络(ANN)回归的示例详解

    hiddenLayerSize为神经网络所用隐层与各层神经元个数,[10 10 10]代表共有三层隐层,各层神经元个数分别为101010

    1.3 数据处理

    接下来,对输入神经网络模型的数据加以处理。

    ANNnet.input.processFcns = {'removeconstantrows','mapminmax'};
    ANNnet.output.processFcns = {'removeconstantrows','mapminmax'};
    ANNnet.divideFcn = 'dividerand';
    ANNnet.divideMode = 'sample';
    ANNnet.divideParam.trainRatio = 0.6;
    ANNnet.divideParam.valRatio = 0.4;
    ANNnet.divideParam.testRatio = 0.0;
    

    其中,ANNnet.input.processFcnsANNnet.output.processFcns分别代表输入模型数据的处理方法,'removeconstantrows'表示删除在各样本中数值始终一致的特征列,'mapminmax'表示将数据归一化处理;divideFcn表示划分数据训练集、验证集与测试集的方法,'dividerand'表示依据所给定的比例随机划分;divideMode表示对数据划分的维度,我们这里选择'sample',也就是对样本进行划分;divideParam表示训练集、验证集与测试集所占比例,那么在这里,因为是直接用了先前随机森林www.devze.com方法(可以看这篇博客)中的数据划分方式,那么为了保证训练集、测试集的固定,我们就将divideParam.testRatio设置为0.0,然后将训练集与验证集比例划分为0.60.4

    1.4 模型训练参数配置

    接下来对模型运行过程中的主要参数加以配置。

    ANNnet.performFcn = 'mse';
    ANNnet.trainParam.epochs=5000;
    ANNnet.trainParam.goal=0.01;
    

    其中,performFcn为模型误差衡量函数,'mse'表示均方误差;trainParam.epochs表示训练时Epoch次数,trainParam.goal表示模型所要达到的精度要求(即模型运行到trainParam.epochs次时或误差小于trainParam.goal时将会停止运行)。

    1.5 神经网络实现

    这一部分代码大多数与绘图、代码与GUI生成等相关,因此就不再一一解释了,大家可以直接运行。需要注意的是,train是模型训练函数。

    % For a list of all plot functions type: help nnplot
    ANNnet.plotFcns = {'plotperform','plottrainstate','ploterrhist','plotregression','plotfit'};
    [ANNnet,tr] = train(ANNnet,x,t);
    y = ANNnet(x);
    e = gsubtract(t,y);
    performance = perform(ANNnet,t,y);
    % Recalculate Training, Validation and Test Performance
    trainTargets = t .* tr.trainMask{1};
    valTargets = t .* tr.valMask{1};
    testTargets = t .* tr.testMask{1};
    trainPerformance = perform(ANNnet,trainTargets,y);
    valPerformance = perform(ANNnet,valTargets,y);
    testPerformance = perform(ANNnet,testTargets,y);
    % view(net)
    % Plots
    %figure, plotperform(tr)
    %figure, plottrainstate(tr)
    %figure, ploterrhist(e)
    %figure, plotregression(t,y)
    %figure, plotfitjavascript(net,x,t)
    % Deployment
    % See the help for each generation function for more information.
    if (false)
        % Generate MATLAB function for neural network for application
        % deployment in MATLAB scripts or with MATLAB Compiler and Builder
        % tools, or simply to examine the calculations your trained neural
        % network performs.
        genFunction(ANNnet,'myNeuralNetworkFunction');
        y = myNeuralNetworkFunction(x);
    end
    if (false)
        % Generate a matrix-only MATLAB function for neural network code
        % generation with MATLAB Coder tools.
        genFunction(ANNnet,'myNeuralNetworkFunction','MatrixOnly','yes');
        y = myNeuralNetworkFunction(x);
    end
    if (false)
        % Generate a Simulink diagram for simulation or deployment with.
        % Simulink Coder tools.
        gensim(ANNnet);
    end
    

    1.6 精度衡量

    %% Accuracy of ANN
    
    ANNPredictYield=sim(ANNnet,TestVARI')';
    ANNRMSE=sqrt(sum(sum((ANNPredictYield-TestYield).^2))/size(TestYield,1));
    ANNrMatrix=corrcoef(ANNPredictYield,TestYield);
    ANNr=ANNrMatrix(1,2);
    ANNRunNum=ANNRunNum+1;
    ANNRMSEMatrix=[ANNRMSEMatrix,ANNRMSE];
    ANNrAllMatrix=[ANNrAllMatrix,ANNr];
    disp(ANNRunNum);
    end
    disp(ANNRMSE);
    

    其中,ANNPredictYield为预测结果;ANNRMSEANNrMatrix分别为模型精度衡量指标RMSE与皮尔逊相关系数。结合本文1.1部分可知,我这里设置为当所得神经网络模型RMSE400以内时,将会停止循环;否则继续开始执行本文1.2部分至1.6部分的代码。

    1.7 保存模型

    这一部分就不再赘述了,大家可以参考文章MATLAB实现随机森林(RF)回归与自变量影响程度分析。

    %% ANN Model Storage
    
    ANNModelSavePath='G:\CropYield\02_CodeAndMap\00_SavedModel\';
    save(sprintf('%sRF0417ANN0399.mat',ANNModelSavePath),'TestVARI','TestYield','TrainVARI','TrainYield','ANNnet','ANNPredictYield','ANNr','ANNRMSE',...
        'hiddenLayerSize');
    

    2 完整代码

    完整代码如下:

    %% ANandroidN Cycle Preparation
    ANNRMSE=9999;
    ANNRunNum=0;
    ANNRMSEMatrix=[];
    ANNrAllMatrix=[];
    while ANNRMSE>1000
    
    %% ANN
    x=TrainVARI';
    t=TrainYield';
    trainFcn = 'trainlm';
    hiddenLayerSize = [10 10 10];
    ANNnet = fitnet(hiddenLayerSize,trainFcn);
    ANNnet.input.processFcns = {'removeconstantrows','mapminmax'};
    ANNnet.output.processFcns = {'removeconstantrows','mapminmax'};
    ANNnet.divideFcn = 'dividerand';
    ANNnet.divideMode = 'sample';
    ANNnet.divideParam.trainRatio = 0.6;
    ANNnet.divideParam.valRatio = 0.4;
    ANNnet.divideParam.testRatio = 0.0;
    ANNnet.performFcn = 'mse';
    ANNnet.trainParam.epochs=5000;
    ANNnet.trainParam.goal=0.01;
    % For a list of all plot functions type: help nnplot
    ANNnet.plotFcns = {'plotperform','plottrainstate','ploterrhist','plotregression','plotfit'};
    [ANNnet,tr] = train(ANNnet,x,t);
    y = ANNnet(x);
    e = gsubtract(t,y);
    performance = per开发者_JAVAform(ANNnet,t,y);
    % Recalculate Training, Validation and Test Performance
    trainTargets = t .* tr.trainMask{1};
    valTargets = t .* tr.valMask{1};
    testTargets = t .* tr.testMask{1};
    trainPerformance = perform(ANNnet,trainTargets,y);
    valPerformance = perform(ANNnet,valTargets,y);
    testPerformance = perform(ANNnet,testTargets,y);
    % view(net)
    % Plots
    %figure, plotperform(tr)
    %figure, plottrainstate(tr)
    %figure, ploterrhist(e)
    %figure, plotregression(t,y)
    %figure, plotfit(net,x,t)
    % Deployment
    % See the help for each generation function for more information.
    if (false)
        % Generate MATLAB function for neural network for application
        % deployment in MATLAB scripts or with MATLAB Compiler and Builder
        % tools, or simply to examine the calculations your trained neural
        % network performs.
        genFunction(ANNnet,'myNeuralNetworkFunction');
        y = myNeuralNetworkFunction(x);
    end
    if (false)
        % Generate a matrix-only MATLAB function for neural network code
        % generation with MATLAB Coder tools.
        genFunction(ANNnet,'myNeuralNetworkFunction','MatrixOnly','yes');
        y = myNeuralNetworkFunction(x);
    end
    if (false)
        % Generate a Simulink diagram for simulation or deployment with.
        % Simulink Coder tools.
        gensim(ANNnet);
    end
    
    %% Accuracy of ANN
    ANNPredictYield=sim(ANNnet,TestVARI')';
    ANNRMSE=sqrt(sum(sum((ANNPredictYield-TestYield).^2))/size(TestYield,1));
    ANNrMatrix=corrcoef(ANNPredictYield,TestYield);
    ANNr=ANNrMatrix(1,2);
    ANNRunNum=ANNRunNum+1;
    ANNRMSEMatrix=[ANNRMSEMatrix,ANNRMSE];
    ANNrAllMatrix=[ANNrAllMatrix,ANNr];
    disp(ANNRunNum);
    end
    disp(ANNRMSE);
    
    %% ANN Model Storage
    ANNModelSavePath='G:\CropYield\02_CodeAndMap\00_www.devze.comSavedModel\';
    save(sprintf('%sRF0417ANN0399.mat',ANNModelSavePath),'AreaPercent','InputOutput','nLeaf','nTree',...
        'RandomNumber','RFModel','RFPredictConfidenceInterval','RFPredictYield','RFr','RFRMSE',...
        'TestVARI','TestYield','TrainVARI','TrainYield','ANNnet','ANNPredictYield','ANNr','ANNRMSE',...
        'hiddenLayerSize');

    以上就是基于Matlab实现人工神经网络(ANN)回归的示例详解的详细内容,更多关于Matlab人工神经网络ANN回归的资料请关注我们其它相关文章!

    0

    上一篇:

    下一篇:

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    最新开发

    开发排行榜