开发者

Python实现异常检测LOF算法的示例代码

目录
  • 背景
  • LOF算法
    • 1.k邻近距离
    • 2.k距离领域
    • 3.可达距离
    • 4.局部可达密度
    • 5.局部异常因子
  • LOF算法流程
    • LOF优缺点
      • python实现LOF
        • PyOD
        • Sklearn

      大家好,我是东哥。

      本篇和大家介绍一个经典的异常检测算法:局部离群因子(Local Outlier Factor),简称LOF算法。

      背景

      Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et. al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3000+ 的引用。

      在 LOF 之前的异常检测算法大多是基于统计方法的,或者是借用了一些聚类算法用于异常点的识别(比如 ,DBSCAN,OPTICS)。这些方法都有一些不完美的地方:

      • 基于统计的方法:通常需要假设数据服从特定的概率分布,这个假设往往是不成立的。
      • 聚类方法:通常只能给出 0/1 的判断(即:是不是异常点),不能量化每个数据点的异常程度。

      相比较而言,基于密度的LOF算法要更简单、直观。它不需要对数据的分布做太多要求,还能量化每个数据点的异常程度(outlierness)。

      下面开始正式介绍LOF算法。

      LOF 算法

      首先,基于密度的离群点检测方法有一个基本假设:非离群点对象周围的密度与其邻域周围的密度类似,而离群点对象周围的密度显著不同于其邻域周围的密度。

      什么意思呢?看下面图片感受下。

      Python实现异常检测LOF算法的示例代码

      集群 C1 包含了 400 多个点,集群 C2 包含 100 个点。C1 和 C2 都是一类集群点,区别是 C1 位置比较集中,或者说密度比较大。而像 o1、o2点均为异常点,因为基于我们的假设,这两个点周围的密度显著不同于周围点的密度。

      LOF 就是基于密度来判断异常点的,通过给每个数据点都分配一个依赖于邻域密度的离群因子 LOF,进而判断该数据点是否为离群点。 如果LOF>=1 ,则该点为离群点,如果LOF≈1 ,则该点为正常数据点。

      那什么是LOF呢?

      了解LOF前,必须先知道一下几个基本概念,因为LOF是基于这几个概念而来的。

      1. k邻近距离

      在距离数据点P最近的几个点中,第K个最近的点跟点P之间的距离称为点P的 K-邻近距离,记为 k-distance (p),公式如下:

      Python实现异常检测LOF算法的示例代码

      点O为距离点P最近的第k个点。

      Python实现异常检测LOF算法的示例代码

      比如上图中,距离点P最近的第4个点是点6。

      这里的距离计算可以采用欧式距离、汉明距离、马氏距离等等。比如用欧式距离的计算公式如下:

      Python实现异常检测LOF算法的示例代码

      这里的重点是找到第k个最近的那个点,然后带公式计算距离。

      2. k距离领域

      以点P为圆心,以k邻近距离dk(P)为半径画圆,这个圆以内的范围就是k距离领域,公式如下:

      Python实现异常检测LOF算法的示例代码

      还是上图所示,假设k=4,那么点 1-6 均是邻域范围内的点。

      3. 可达距离

      这个可达距离大家需要留意点,点P到点O的第k可达距离:

      这里计算P到点O的第k可达距离,但是要以点O为中心,取一个最大值,也就是在点P与O的距离编程客栈、距离点O最近的第k个点距离中取较大的一个,如图下所示。

      Python实现异常检测LOF算法的示例代码

      p2距离o远,那么两者之间的可达距离就是它们的实际距离。如果距离足够近,如点p1,实际距离将被o的k距离代替。所有p接近o的统计波动d(p,o)可以显著减少,这可以通过参数k来控制,k值越高,同一邻域内的点的可达距离越相似。

      4. 局部可达密度

      先给出公式。

      Python实现异常检测LOF算法的示例代码

      数据点P的局部可达密度就是基于P的最近邻的平均可达距离的倒数。距离越大,密度越小。

      5. 局部异常因子

      根据局部可达密度的定义,如果一个数据点跟其他点比较疏远的话,那么显然它的局部可达密度就小。但LOF算法衡量一个数据点的异常程度,并不是看它的绝对局部密度,而是看它跟周围邻近的数据点的相对密度。

      这样做的好处是可以允许数据分布不均匀、密度不同的情况。局部异常因子即是用局部相对密度来定义的。数据点p的局部相对密度(局部异常因子)为点p邻域内点的平均局部可达密度跟数据点p的局部可达密度的比值,即:

      Python实现异常检测LOF算法的示例代码

      LOF算法流程

      了解了 LOF 的定义以后,整个算法也就显而易见了:

      • 对于每个数据点,计算它与其它所有点的距离,并按从近到远排序;
      • 对于每个数据点,找到它的 k-nearest-neighbor,计算 LOF 得分;
      • 如果LOF值越大,说明越异常,反之如果越小,说明越趋于正常。

      Python实现异常检测LOF算法的示例代码

      LOF优缺点

      优点

      LOF 的一个优点是它同时考虑了数据集的局部和全局属性。异常值不是按绝对值确定的,而是相对于它们的邻域点密度确定的。当数据集中存在不同密度的不同集群时,LOF表现良好,比较适用于中等高维的数据集。

      缺点

      LOF算法中关于局部可达密度的定义其实暗含了一个假设,即:不存在大于等于 k 个重复的点。

      当这样的重复点存在的时候,这些点的平均可达距离为零,局部可达密度就变为无穷大,会给计算带来一些麻烦。在实际应用时,为了避免这样的情况出现,可以把 k-distance 改为 k-distinct-distance,不考虑重复的情况。或者,还可以考虑给可达距离都加一个很小的值,避免可达距离等于零。

      另外,LOF 算法需要计算数据点两两之间的距离,造成整个算法时间复杂度为O(n2)。为了提高算法效率,后续有算法尝试改进。FastLOF (Goldstein,2012)先将整个数据随机的分成多个子集,然后在每个子集里计算 LOF 值。对于那些 LOF 异常得分小于等oZIzuCgrp于 1 的,从数据集里剔除,剩下的在下一轮寻找更合适的 nearest-neighbor,并更新 LOF 值。

      Python 实现 LOF

      有两个库可以计算LOF,分别是PyODSklearn,下面分别介绍。

      使用pyod自带的方法生成200个训练样本和100个测试样本的数据集。正态样本由多元高斯分布生成,异常样本是使用均匀分布生成的。

      训练和测试数据集都有 5 个特征,10% 的行被标记为异常。并且在数据中添加了一些随机噪声,让完美分离正常点和异常点变得稍微困难一些。

      from pyod.utils.data import generate_data
      import numpy as np
      X_train, y_train, X_test, y_test = \
              generate_data(n_train=200,
                            n_test=100,
                            n_features=5,
                            contamination=0.1,
                            random_state=3) 
      X_train = X_train * np.random.uniform(0, 1, size=X_train.shape)
      X_test = X_test * np.random.uniform(0,1, size=X_test.shape)

      PyOD

      下面将训练数据拟合了 LOF 模型并将其应用于合成测试数据。

      在 PyOD 中,有两个关键方法:decision_function 和 predict

      • decision_function:返回每一行的异常分数
      • predict:返回一个由 0 和 1 组成的数组,指示每一行被预测为正常 (0) 还是异常值 (1)
      frompyod.models.lofimportLOF
      clf_name='LOF'
      clf=LOF()
      clf.fit(X_train)
      
      test_scores=clf.decision_function(X_test)
      
      roc=round(roc_auc_score(y_test,test_scores),ndigits=4)
      prn=round(precision_n_scores(y_test,test_scores),ndigits=4)
      
      print(f'{clf_name}ROC:{roc},precision@rankn:{prn}')
      >>LOFROC:0.9656,precision@rankn:0.8
      

      可以通过 LOF 模型方法查看 LOF 分数的分布。在下图中看到正常数据(蓝色)的分数聚集在 1.0 左右。离群数据点(橙色)的得分均大于 1.0,一般高于正常数据。

      Python实现异常检测LOF算法的示例代码

      Sklearn

      scikit-learn中实现 LOF 进行异常检测时,有两种模式选择:异常检测模式 (novelty=False) 和 novelty检测模式 (novelty=True)

      在异常检测模式oZIzuCgrp下,只有fit_predic编程客栈t生成离群点预测的方法可用。可以使用negative_outlier_factor_属性检索训练数据的异常值分数,但无法为未见过的数据生成分数。模型会根据contamination参数(默认值为 0.1)自动选择异常值的阈值。

      importmatplotlib.pyplotasplt
      
      detector=LOF()
      scores=detector.fit(X_train).decision_funcwww.cppcns.comtion(X_test)
      
      sns.distplot(scores[y_test==0],label="inlierscores")
      sns.distplot(scores[y_test==1],label="outlierscores").set_title("DistributionofOutlierScoresfromLOFDetector")
      plt.legend()
      plt.xlabel("Outlierscore")
      

      在novelty检测模式下,只有decision_function用于生成异常值可用。fit_predict方法不可用,但predict方法可用于生成异常值预测。

      clf=LocalOutlierFactor(novelty=True)
      clf=clf.fit(X_train)
      test_scores=clf.decision_function(X_test)
      
      test_scores=-1*test_scores
      
      roc=round(roc_auc_score(y_test,test_scores),ndigits=4)
      prn=round(precision_n_scores(y_test,test_scores),ndigits=4)
      
      print(f'{clf_name}ROC:{roc},precision@rankn:{prn}')
      

      该模式下模型的异常值分数被反转,异常值的分数低于正常值。

      Python实现异常检测LOF算法的示例代码

      以上就是Python实现异常检测LOF算法的示例代码的详细内容,更多关于Python LOF算法的资料请关注我们其它相关文章!

      0

      上一篇:

      下一篇:

      精彩评论

      暂无评论...
      验证码 换一张
      取 消

      最新开发

      开发排行榜