开发者

PyTorch手写数字数据集进行多分类

目录
  • 一、实现过程
    • 0、导包
    • 1、准备数据
    • 2、设计模型
    • 3、构造损失函数和优化器
    • 4、训练和测试
  • 二、参考文献

    一、实现过程

    本文对经典手写数字数据集进行多分类,损失函数采用交叉熵,激活函数采用ReLU,优化器采用带有动量的mini-batchSGD算法。

    所有代码如下:

    0、导包

    import torch
    from torchvision import transforms,datasets
    from torch.utils.data import DataLoader
    import torch.nn.functional as F
    import torch.optim as optim

    1、准备数据

    batch_size = 64
    transform = transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize((0.1307,),(0.3081,))
    ])
    
    # 训练集编程客栈
    train_dataset = datasets.MNIST(root='G:/datasets/mnist',train=True,download=False,transform=transform)
    train_loader = DataLoader(train_dataset,shuffle=True,batch_size=batch_size)
    # 测试集
    test_dataset = datasets.MNIST(root='G:/datasets/mnist',train=False,download=False,transform=transform)
    test_loader = DataLoader(test_dathttp://www.cppcns.comaset,shuffle=False,batch_size=batch_size)

    2、设计模型

    class Net(torch.nn.Module):
      def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        www.cppcns.comself.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)
    
      def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)
    model = Net()
    # 模型加载到GPU上
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model.to(device)

    3、构造损失函数和优化器

    criterion = torch.nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)

    4、训练和测试

    def train(epoch):
      running_loss = 0.0
      for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
    
        # forward+backward+update
        outputs = model(inputs.to(device))
        loss = criterion(outputs, target.to(device))
        loss.backward()
        optimizer.step()
    
        running_loss += loss.item()
        if batch_idx % 300 == 299:
          print('[%d,%d] loss: %.3f' % (e编程客栈poch + 1, batch_idx + 1, running_loss / 300))
          running_loss = 0.0
    def test():
      correct = 0
      total = 0
      with torch.no_grad():
        for data in test_loader:
          images, labels = data
          outputs = model(images.to(device))
          _, predicted = torch.max(outputs.data, dim=1)
          total += labels.size(0)
          correct += (predicted.cpu() == labels).sum().item()
      print('Accuracy on test set: %d %%' % (100 * correct / total))
    
    for epoch in range(10):
      train(epoch)
      test()

    运行结果如下:

    [1,300] loss: 2.166

    [1,600] loss: 0.797

    [1,900] loss: 0.405

    Accuracy on test set: 90 %

    [2,300] loss: 0.303

    [2,600] loss: 0.252

    [2,900] loss: 0.218

    Accuracy on test set: 94 %

    [3,300] loss: 0.178

    [3,600] loss: 0.168

    [3,900] loss: 0.142

    Accuracy on test set: 95 %

    [4,300] loss: 0.129

    [4,600] loss: 0.119

    [4,900] loss: 0.110

    Accuracy on test set: 96 %

    [5,300] loss: 0.094

    [5,600] loss: 0.092

    [5,900] loss: 0.091

    Accuracy on test set: 96 %

    [6,300] loss: 0.077

    [6,600] loss: 0.070

    [6,900] loss: 0.075

    Accuracy on test set: 97 %

    [7,300] loss: 0.061

    [7,600] loss: 0.058

    [7,900] loss: 0.058

    Accuracy on test set: 97 %

    [8,300] loss: 0.043

    [8,600] loss: 0.051

    [8,900] loss: 0.050

    Accuracy on test set: 97 %

    [9,300] loss: 0.041

    [9,600] loss: 0.038

    [9,9编程客栈00] loss: 0.043

    Accuracy on test set: 97 %

    [10,300] loss: 0.030

    [10,600] loss: 0.032

    [10,900] loss: 0.033

    Accuracy on test set: 97 %

    二、参考文献

    • [1] https://www.bilibili.com/video/BV1Y7411d7Ys?p=9

     到此这篇关于PyTorch手写数字数据集进行多分类的文章就介绍到这了,更多相关python多分类内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

    0

    上一篇:

    下一篇:

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    最新开发

    开发排行榜