Redisson分布式限流器RRateLimiter的使用及原理小结
目录
- 一、基本使用
- 1.1 创建限流器
- 1.2 获取令牌
- 1.3 使用示例
- 二、实现原理
一、基本使用
1.1 创建限流器
/** * Returns rate limiter instance by name * * @param name of rate limiter * @return RateLimiter object */ RRateLimiter getRateLimiter(String name);
/** * Initializes RateLimiter's state and stores config to Redis server. * * @param mode - rate mode * @param rate - rate * @param rateInterval - rate time interval * @param rateIntervalUnit - rate time interval unit * @return true if rate was set and false otherwise */ boolean trySetRate(RateType mode, long rate, long rateInterval, RateIntervalUnit rateIntervalUnit);
trySetRate
用于设置限流参数。其中 RateType 包含 OVERALL
和 PER_CLIENT
两个枚举常量,分别表示全局限流和单机限流。后面三个参数表明了令牌的生成速率,即每 rateInterval
生成 rate
个令牌,rateIntervalUnit
为 rateInterval
的时间单位。
1.2 获取令牌
/** * Acquires a specified permits from this RateLimiter, * blocking until one is available. * * Acquires the given number of permits, if they are available * and returns immediately, reducing the number of available permits * by the given amount. * * @param permits the number of permits to acquire */ void acquire(long permits); /** * Acquires the given number of permits only if all are available * within the given waiting time. * * Acquires the given number of permits, if all are available and returns immejsdiately, * with the value true, reducing the number of available permits by one. * * If no permit is available then the current thread becomes * disabled for thread scheduling purposes and lies dormant until * the specified waiting time elapses. * * If a permits is acquired then the value true is returned. * * If the specified waiting time elapses then the value false * is returned. If the time is less than or equal to zero, the method * will not wait at all. * * @param permits amount * @param timeout the maximum time to wait for a permit * @param unit the time unit of the timeout argument * @return true if a permit was acquired and false * if the waiting time elapsed before a permit was acquired */ boolean tryAcquire(long permits, long timeout, TimeUnit unit);
acquire
和 tryAcquire
均可用于获取指定数量的令牌,不过 acquire
会阻塞等待,而 tryAcquire
会等待 timeout
时间,如果仍然没有获得指定数量的令牌直接返回 false
。
1.3 使用示例
@Slf4j @SpringBootTest class RateLimiterTest { @Autowired private RedissonClient redissonClient; private static final int threadCount = 10; @Test void test() throws InterruptedException { RRateLimiter rateLimiter = redissonClient.getRateLimiter("my_limiter"); rateLimiter.tryhttp://www.devze.comSetRate(RateType.OVERALL, 10, 1, RateIntervalUnit.SECONDS); CountDownLatch latch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { rateLimiter.tryAcquire(5, 3, TimeUnit.SECONDS); latch.countDown(); log.info("latch count {}", latch.getCount()); }).start(); } latch.await(); } }
2024-01-16 20:14:27 INFO [Thread-2] atreus.ink.rate.RateLimiterTest : latch count 9
2024-01-16 20:14:27 INFO [Thread-3] atreus.ink.rate.RateLimiterTest : latch count 82024-01-16 20:14:28 INFO [Thread-1] atreus.ink.rate.RateLimiterTest : latch count 72024-01-16 20:14:29 INFO [Thread-10] atreus.ink.rate.RateLimiterTest : latch count 62024-01-16 20:14:29 INFO [Thread-8] atreus.ink.rate.RateLimiterTest : latch count 52024-01-16 20:14:30 INFO [Thread-5] atreus.ink.rate.RateLimiterTest : latch count 42024-01-16 20:14:30 INFO [Thread-4] atreus.ink.rate.RateLimiterTest : latch count 32024-01-16 20:14:30 INFO [Thread-6] atreus.ink.rate.RateLimiterTest : latch count 22024-01-16 20:14:30 INFO [Thread-7] atreus.ink.rate.RateLimiterTest : lhttp://www.devze.comatch count 12024-01-16 20:14:30 INFO [Thread-9] atreus.ink.rate.RateLimiterTest : latch count 0
二、实现原理
Redisson 的 RRateLimiter 基于令牌桶实现,令牌桶的主要特点如下:
- 令牌以固定速率生成。
- 生成的令牌放入令牌桶中存放,如果令牌桶满了则多余的令牌会直接丢弃,当请求到达时,会尝试从令牌桶中取令牌,取到了令牌的请求可以执行。
- 如果桶空了,那么尝试取令牌的请求会被直接丢弃。
RRateLimiter 在创建限流器时通过下面 Lua 脚本设置限流器的相关参数:
redis.call('hsetnx', KEYS[1], 'rate', ARGV[1]); redis.call('hsetnx', KEYS[1], 'interval', ARGV[2]); retu编程客栈rn redis.call('hsetnx', KEYS[1], 'type', ARGV[3]);
而获取令牌则是通过以下的 Lua 脚本实现:
-- 请求参数示例 -- KEYS[1] my_limiter -- KEYS[2] {my_limiter}:value -- KEYS[4] {my_limiter}:permits -- ARGV[1] 3 本次请求的令牌数 -- ARGV[2] 1705396021850 System.currentTimeMillis() -- ARGV[3] 6966135962453115904 ThreadLocalRandom.current().nextLong() -- 读取 RRateLimiter.trySetRate 中配置的限流器信息 local rate = redis.call('hget', KEYS[1], 'rate'); -- 10 一个时间窗口内产生的令牌数 local interval = redis.call('hget', KEYS[1], 'interval'); -- 1000 一个时间窗口对应的毫秒数 local type = redis.call('hget', KEYS[1], 'type'); -- 0 全局限流 assert(rate ~= false and interval ~= false and type ~= false, 'RateLimiter is not initialized') local valueName = KEYS[2]; -- {my_limiter}:value 当前可用令牌数字符串的 key local permitsName = KEYS[4]; -- {my_limiter}:permits 授权记录有序集合的 key -- 单机限流配置 无需考虑 if type == '1' then valueName = KEYS[3]; permitsName = KEYS[5]; end; -- 查询当前可用的令牌数 查询失败表明是首次请求令牌 local currentValue = redis.call('get', valueName); if currentValue == false then -- 首次请求令牌 -- 单次请求的令牌数不能超过一个时间窗口内产生的令牌数 assert(tonumber(rate) >= tonumber(ARGV[1]), 'Requested permits amount could not exceed defined rate'); -- 更新当前可用令牌数以及令牌授权记录 {my_limiter}:permits -- set {my_limiter}:permits 10 redis.call('set', valueName, rate); -- zadd {my_limiter}:permits 1705396021850 6966135962453115904_1 redis.call('zadd', permitsName, ARGV[2], struct.pack('fI', ARGV[3], ARGV[1])); -- decrby {my_limiter}:permits 3 编程客栈 redis.call('decrby', valueName, ARGV[1]); return nil; else -- 再次请求令牌 -- 查询可以回收的令牌对应的授权记录 即一个时间窗口前的所有授权记录且包括一个时间窗口前这一时刻 -- 旧令牌回收的本质是新令牌的加入 如果一个令牌是在一个时间窗口前被分配的 那经过一个时间窗口后这个空出的位置应该已经由新令牌填充 -- zrangebyscore {my_limiter}:permits 0 1705396020850 local expiredValues = redis.call('zrangebyscore', permitsName, 0, tonumber(ARGV[2]) - interval); -- [1936135962853113704_2, 536135765023123704_5] -- 统计可以回收的令牌数 local released = 0; for i, v in ipairs(expiredValues) do local random, permits = struct.unpack('fI', v); -- released = released + 2 -- released = released + 5 released = released + permits; end; -- 删除授权记录并回收令牌 if released > 0 then -- zrem {my_limiter}:permits 1936135962853113704_2 536135765023123704_5 redis.call('zrem', permitsName, unpack(expiredValues)); currentValue = tonumber(currentValue) + released; -- incrby {my_limiter}:value 7 redis.call('set', valueName, currentValue); end; if tonumber(currentValue) < tonumber(ARGV[1]) then -- 如果回收后可用令牌数仍然不足 返回需要等待的时间 -- zrangebyscore {my_limiter}:permits (1705396020850 1705396021850 withscores limit 0 1 local nearest = redis.call('zrangebyscore', permitsName, '(' .. (tonumber(ARGV[2]) - interval), tonumber(ARGV[2]), 'withscores', 'limit', 0, 1); local random, permits = struct.unpack('fI', nearest[1]); -- 1705396021650 - 1705396021850 + 1000 = 800 return tonumber(nearest[2]) - (tonumber(ARGV[2]) - interval); else redis.call('zadd', permitsName, ARGV[2], struct.pack('fI', ARGV[3], ARGV[1])); redis.call('decrby', valueName, ARGV[1]); return nil; end; end;
参考:
https://github.com/oneone1995/blog/issues/13
https://www.infoq.cn/article/Qg2tX8fyw5Vt-f3HH673
到此这篇关于Redisson分布式限流器RRateLimiter的使用及原理小结的文章就介绍到这了,更多相关Redisson RRateLimiter内容请搜索编程客栈(www.devze.com)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程客栈(www.devze.com)!
精彩评论