开发者

Redis中Bloom filter布隆过滤器的学习

目录
  • 1.概念
  • 2.guava实现
    • 2.1.依赖
    • 2.2.初始化布隆过滤器
    • 2.3.布隆过滤器
    • 2.4.添加元素或者判断是否存在
  • 3.Redisson实现
    • 3.1.依赖
    • 3.2.注入或测试

1.概念

​ 布隆过滤器是一个高空间利用率的概率性数据结构,主要目的是节省内存空间以及判断一个元素是否存在于一个集合中(存在误判的情况),可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率(控制参数:error_rate-误判率 initial_size-初始容量)

​ error_rate越小,越精确,需要的空间越大

​ initial_size越大,越精确,当实际数量超出这个数值时,误判率会上升

布隆过滤器可以判断某个数据一定不存在,但是无法判断一定存在

2.guava实现

2.1.依赖

<!--guava实现布隆过滤器-->
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>19.0</version>
</dependency&g编程客栈t;

2.2.初始化布隆过滤器

//初始化布隆过滤器,放入到spring容器里面
@Bean
public MyBloomFilter<String> initBloomFilterHelper() {
    return new MyBloomFilter<>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8)
                               , 1000000, 0.01);
}

2.3.布隆过滤器

package com.qin.redis.bloomfilter;
import com.google.common.base.Precond开发者_SQLiteitions;
import com.google.common.hash.Funnel;
import com.google.common.hash.Hashing;
/**
 * @version: V1.0.0
 * @className: MyBloomFilter
 */
public class MyBloomFilter<T> {
    private int numHashFunctions;
    private int bitSize;
    private Funnel<T> funnel;
    public MyBloomFilter(Funnel<T> funnel, int expectedInsertions, double fpp) {
        Preconditions.checkArgument(funnel != null, "funnel不能为空");
        this.funnel = funnel;
        // 计算bit数组长度
        bitSize = optimalNumOfBits(expectedInsertions, fpp);
        // 计算hash方法执行次数
        numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize);
    }
    public int[] murmurHashOffset(T value) {
        int[] offset = new int[numHashFunctions];
        long hash64 = Hashing.murmur3_128().hashObject(value, funnel).asLong();
        int hash1 = (int) hash64;
        int hash2 = (int) (hash64 >>> 32);
        for (int i = 1; i <= numHashFunctions; i++) {
            int nextHash = hash1 + i * hash2;
            if (nextHash < 0) {
                nextHash = ~nextHash;
            }
            offset[i - 1] = nextHash % bitSize;
        }
        return offset;
    }
    /**
     * 计算bit数组长度
     */
    private int optimalNumOfBits(long n, double p) {
        if (p == 0) {
            // 设定最小期望长度
            p = Double.MIN_VALUE;
        }
        int sizeOfBitArray = (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
        return sizeOfBitArray;
    }
    /**
     * 计算hash方法执行次数
     */
    private static int optimalNumOfHashFunctions(long n, long m) {
        int countOfHash = Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
        return countOfHash;
    }
    public static void main(String[] args) {
        System.out.println(optimalNumOfHashFunctions(10000000js00L, 123450000L));
    }
}

2.4.添加元素或者判断是否存在

package com.qin.redis.bloomfilter.service;
import com.google.common.base.Preconditions;
import com.hikvison.aksk.redis.bloomfilter.MyBloomFilter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
/**
 * @version: V1.0.0
 * @className: RedisBloomFilterService
 */
@Service
public class RedisBloomFilterService {
    @Autowired
    private RedisTemplate redisTemplate;
    /**
     * 根据给定的布隆过滤器添加值
     */
    public <T> void addByBloomFilter(MyBloomFilter<T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "myBloomFilter不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            redisTemplate.opsForValue().setBit(key, i, true);
        }
    }
    /**
     * 根据给定的布隆过滤器判断值是否存在
     */
    public <T> boolean includeByBloomFilter(MyBloomFilter&l编程客栈t;T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "myBloomFilter不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            if (!redisTemplate.opsForValue().getBit(key, i)) {
                return false;
            }
        }
        return true;
    }
}

3.Redisson实现

3.1.依赖

<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>2.7.0</version>
</dependency>

3.2.注入或测试

 //单机模式:可以设置集群、哨兵模式
    @Bean
    public Redisson redisson() {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://127.0.0.1:6379");
        RedissonClient redissonClient = Redisson.create(config);
        //初始化过滤器
        RBloomFilter<Object> bloomFilter = redissonClient.getBloomFilter("testBloomFilter");
        bloomFilter.tryInit(1000000L,0.05);
        //插入元素
        bloomFilter.add("zhangsan");
        bloomFilter.add("lisi");
        //判断元素是否存在
        boolean flphpag = bloomFilter.contains("lisi");
        retjsurn (Redisson) redissonClient;
    }

到此这篇关于Redis中Bloom filter布隆过滤器的学习的文章就介绍到这了,更多相关Redis布隆过滤器内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新数据库

数据库排行榜