Can I avoid committing to particular types in a module type and still get pattern matching?
I have two module types:
module type ORDERED =
sig
type t
val eq : t * t -> bool
val lt : t * t -> bool
val leq : t * t -> bool
end
module type STACK =
sig
exception Empty
type 'a t
val empty : 'a t
val isEmpty : 'a t -> bool
val cons 开发者_运维技巧 : 'a * 'a t -> 'a t
val head : 'a t -> 'a
val tail : 'a t -> 'a t
val length : 'a t -> int
end
I want to write a functor which "lifts" the order relation from the basic ORDERED
type to STACKs
of that type. That can be done by saying that, for example, two stacks of elements will be equal if all its individual elements are equal. And that stacks s1 and s2 are s.t. s1 < s2 if the first of each of their elements, e1 and e2, are also s.t. e1 < e2, etc.
Now, if don't commit to explicitly defining the type in the module type, I will have to write something like this (or won't I?):
module StackLift (O : ORDERED) (S : STACK) : ORDERED =
struct
type t = O.t S.t
let rec eq (x,y) =
if S.isEmpty x
then if S.isEmpty y
then true
else false
else if S.isEmpty y
then false
else if O.eq (S.head x,S.head y)
then eq (S.tail x, S.tail y)
else false
(* etc for lt and leq *)
end
which is a very clumsy way of doing what pattern matching serves so well. An alternative would be to impose the definition of type STACK.t
using explicit constructors, but that would tie my general module somewhat to a particular implementation, which I don't want to do.
Question: can I define something different above so that I can still use pattern matching while at the same time keeping the generality of the module types?
As an alternative or supplement to the other access functions, the module can provide a view function that returns a variant type to use in pattern matching.
type ('a, 's) stack_view = Nil | Cons of 'a * 's
module type STACK =
sig
val view : 'a t -> ('a , 'a t) stack_view
...
end
module StackLift (O : ORDERED) (S : STACK) : ORDERED =
struct
let rec eq (x, y) =
match S.view x, S.view y with
Cons (x, xs), Cons (y, ys) -> O.eq (x, y) && eq (xs, ys)
| Nil, Nil -> true
| _ -> false
...
end
Any stack with a head
and tail
function can have a view
function too, regardless of the underlying data structure.
I believe you've answered your own question. A module type in ocaml is an interface which you cannot look behind. Otherwise, there's no point. You cannot keep the generality of the interface while exposing details of the implementation. The only thing you can use is what's been exposed through the interface.
My answer to your question is yes, there might be something you can do to your definition of stack, that would make the type of a stack a little more complex, thereby making it match a different pattern than just a single value, like (val,val)
for instance. However, you've got a fine definition of a stack to work with, and adding more type-fluff is probably a bad idea.
Some suggestions with regards to your definitions:
- Rename the following functions:
cons => push
,head => peek
,tail => pop_
. I would also add a functionval pop : 'a t -> 'a * 'a t
, in order to combinehead
andtail
into one function, as well as to mirrorcons
. Your current naming scheme seems to imply that a list is backing your stack, which is a mental leak of the implementation :D. - Why do
eq
,lt
, andleq
take a pair as the first parameter? In constraining the type ofeq
to beval eq : 'a t * 'a t -> 'a t
, you're forcing the programmer that uses your interface to keep around one side of the equality predicate until they've got the other side, before finally applying the function. Unless you have a very good reason, I would use the default curried form of the function, since it provides a little more freedom to the user (val eq : 'a t -> 'a t -> 'a t
). The freedom comes in that they can partially applyeq
and pass the function around instead of the value and function together.
精彩评论