开发者

Why are message queues used insted of mulithreading?

I have the following query which i need someone to please help me with.Im new to message queues and have recently starte开发者_如何学运维d looking at the Kestrel message queue. As i understand,both threads and message queues are used for concurrency in applications so what is the advantage of using message queues over multitreading ?

Please help Thank you.


message queues allow you to communicate outside your program.

This allows you to decouple your producer from your consumer. You can spread the work to be done over several processes and machines, and you can manage/upgrade/move around those programs independently of each other.

A message queue also typically consists of one or more brokers that takes care of distributing your messages and making sure the messages are not lost in case something bad happens (e.g. your program crashes, you upgrade one of your programs etc.)

Message queues might also be used internally in a program, in which case it's often just a facility to exchange/queue data from a producer thread to a consumer thread to do async processing.


Actually, one facilitates the other. Message queue is a nice and simple multithreading pattern: when you have a control thread (usually, but not necessarily an application's main thread) and a pool of (usually looping) worker threads, message queues are the easiest way to facilitate control over the thread pool.

For example, to start processing a relatively heavy task, you submit a corresponding message into the queue. If you have more messages, than you can currently process, your queue grows, and if less, it goes vice versa. When your message queue is empty, your threads sleep (usually by staying locked under a mutex).

So, there is nothing to compare: message queues are part of multithreading and hence they're used in some more complicated cases of multithreading.


Creating threads is expensive, and every thread that is simultaneously "live" will add a certain amount of overhead, even if the thread is blocked waiting for something to happen. If program Foo has 1,000 tasks to be performed and doesn't really care in what order they get done, it might be possible to create 1,000 threads and have each thread perform one task, but such an approach would not be terribly efficient. An second alternative would be to have one thread perform all 1,000 tasks in sequence. If there were other processes in the system that could employ any CPU time that Foo didn't use, this latter approach would be efficient (and quite possibly optimal), but if there isn't enough work to keep all CPUs busy, CPUs would waste some time sitting idle. In most cases, leaving a CPU idle for a second is just as expensive as spending a second of CPU time (the main exception is when one is trying to minimize electrical energy consumption, since an idling CPU may consume far less power than a busy one).

In most cases, the best strategy is a compromise between those two approaches: have some number of threads (say 10) that start performing the first ten tasks. Each time a thread finishes a task, have it start work on another until all tasks have been completed. Using this approach, the overhead related to threading will be cut by 99%, and the only extra cost will be the queue of tasks that haven't yet been started. Since a queue entry is apt to be much cheaper than a thread (likely less than 1% of the cost, and perhaps less than 0.01%), this can represent a really huge savings.

The one major problem with using a job queue rather than threading is that if some jobs cannot complete until jobs later in the list have run, it's possible for the system to become deadlocked since the later tasks won't run until the earlier tasks have completed. If each task had been given a separate thread, that problem would not occur since the threads associated with the later tasks would eventually manage to complete and thus let the earlier ones proceed. Indeed, the more earlier tasks were blocked, the more CPU time would be available to run the later ones.


It makes more sense to contrast message queues and other concurrency primitives, such as semaphores, mutex, condition variables, etc. They can all be used in the presence of threads, though message-passing is also commonly used in non-threaded contexts, such as inter-process communication, whereas the others tend to be confined to inter-thread communication and synchronisation.

The short answer is that message-passing is easier on the brain. In detail...

Message-passing works by sending stuff from one agent to another. There is generally no need to coordinate access to the data. Once an agent receives a message it can usually assume that it has unqualified access to that data.

The "threading" style works by giving all agent open-slather access to shared data but requiring them to carefully coordinate their access via primitives. If one agent misbehaves, the process becomes corrupted and all hell breaks loose. Message passing tends to confine problems to the misbehaving agent and its cohort, and since agents are generally self-contained and often programmed in a sequential or state-machine style, they tend not to misbehave as often — or as mysteriously — as conventional threaded code.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜