Question Answering with Lucene
For a toy project, I want to implement an automated question answering system 开发者_开发技巧with Lucene and I'm trying to figure out a reasonable way to implement it. The basic operation is as follows:
1) The user will enter a question.
2) The system will identify the keywords in the question.
3) The keywords will be searched in a large knowledgebase and matching sentences will be shown as answers.
My knowledgebase (i.e., corpus) is not structured. It is just a large, continuous text (say, a user manual without any chapters). I mean that the only structure is that sentences and paragraphs are identified.
I plan to treat each sentence or paragraph as a separate document. To present the answer in a context, I may consider keeping one sentence/paragraph before/after the indexed one as payload. I would like to know if that makes sense. Also, I'm wondering if there are other tried and well-known approaches for that kind of systems. As an example, another approach that comes to mind is to index large chunks of the corpus as documents with the token positions, then process the vicinity of found keywords to construct my answers.
I would appreciate direct recommendations based on experience or intuition, but also tutorials or introductory materials to question-answering systems with Lucene in mind.
Thanks.
It's not an unreasonable approach to take.
One enhancement you might consider is incorporating learning feedback, so that you can continually improve the scoring of content vs search terms. To do this you would ask users to rate the answers that come back ('helpful vs unhelpful'), that way you can start to rank documents against keywords based on the historical data. You could classify potential documents as helpful/unhelpful for given keywords by using a simple Bayesian classifier.
Indexing each sentence as a document will give you some problems. You've pointed out one: you would need to store the surrounding texts a payloads. That means you'll need to store each sentence three times (before, during and after), and you'll have to manually get into the payload.
If you want to go the route of each sentence being a document, I would recommend coming up with an ID for each sentence and storing that as a separate field. Then you can display [ID-1, ID, ID+1] in each result.
The bigger question though is: how should you break up the text into documents? Identifying semantically related areas seems difficult, so doing it by sentence/paragraph might be the only way to go. A better way would be if you could find which text is the header of a section, and then put everything in that section as a document.
You might also want to use the index (if your corpus has one). The terms there could be boosted, as they are presumably more important.
Instead of luncene which does text indexing, search and retrieval, I think using something like Apache Mahout would help with this. Mahout considers text as knowledge and doing that makes the answering the question better than just text matching. Mahout is a machine learning and data mining f/w which fits this domain better. Just a very high level thought.
--Sai
精彩评论