How do I implement the Sieve Of Eratosthenes using multithreaded C#?
I am trying to implement Sieve Of Eratosthenes using Mutithreading. Here is my implementation:
using System;
using System.Collections.Generic;
using System.Threading;
namespace Sieve_Of_Eratosthenes
{
class Controller
{
public static int upperLimit = 1000000000;
public static bool[] primeArray = new bool[upperLimit];
static void Main(string[] args)
{
DateTime startTime = DateTime.Now;
Initialize initial1 = new Initialize(0, 249999999);
Initialize initial2 = new Initialize(250000000, 499999999);
Initialize initial3 = new Initialize(500000000, 749999999);
Initialize initial4 = new Initialize(750000000, 999999999);
initial1.thread.Join();
initial2.thread.Join();
initial3.thread.Join();
initial4.thread.Join();
int sqrtLimit = (int)Math.Sqrt(upperLimit);
Sieve sieve1 = new Sieve(249999999);
Sieve sieve2 = new Sieve(499999999);
Sieve sieve3 = new Sieve(749999999);
Sieve sieve4 = new Sieve(999999999);
for (int i = 3; i < sqrtLimit; i += 2)
{
if (primeArray[i] == true)
{
int squareI = i * i;
if (squareI <= 249999999)
{
sieve1.set(i);
sieve2.set(i);
sieve3.set(i);
sieve4.set(i);
sieve1.thread.Join();
sieve2.thread.Join();
sieve3.thread.Join();
sieve4.thread.Join();
}
else if (squareI > 249999999 & squareI <= 499999999)
{
sieve2.set(i);
sieve3.set(i);
sieve4.set(i);
sieve2.thread.Join();
sieve3.thread.Join();
sieve4.thread.Join();
}
else if (squareI > 499999999 & squareI <= 749999999)
{
sieve3.set(i);
sieve4.set(i);
sieve3.thread.Join();
sieve4.thread.Join();
}
else if (squareI > 749999999 & squareI <= 999999999)
{
sieve4.set(i);
sieve4.thread.Join();
}
}
}
int count = 0;
primeArray[2] = true;
for (int i = 2; i < upperLimit; i++)
{
if (primeArray[i])
{
count++;
}
}
Console.WriteLine("Total: " + count);
DateTime endTime = DateTime.Now;
TimeSpan elapsedTime = endTime - startTime;
Console.WriteLine("Elapsed time: " + elapsedTime.Seconds);
}
public class Initialize
{
public Thread thread;
private int lowerLimit;
private int upperLimit;
public Initialize(int lowerLimit, int upperLimit)
{
this.lowerLimit = lowerLimit;
this.upperLimit = upperLimit;
thread = new Thread(this.InitializeArray);
thread.Priority = ThreadPriority.Highest;
thread.Start();
}
private void InitializeArray()
{
for (int i = this.lowerLimit; i <= this.upperLimit; i++)
{
if (i % 2 == 0)
{
Controller.primeArray[i] = false;
}
else
{
Controller.primeArray[i] = true;
}
}
}
}
public class Sieve
{
public Thread thread;
public int i;
private int upperLimit;
public Sieve(int upperLimit)
{
this.upperLimit = upperLimit;
}
public void set(int i)
{
this.i = i;
thread = new Thread(this.primeGen);
thread.Start();
}
public void primeGen()
{
for (int j = this.i * this.i; j <= this.upperLimit; j += i)
{
Controller.primeArray[j] = false;
}
}
}
}
}
This takes 30 seconds to produce the output, is there any way to speed this up?
Edit: Here is the TPL implementation:
public LinkedList<int> GetPrimeList(int limit) {
LinkedList<int> primeList = new LinkedList<int>();
bool[] primeArray = new bool[limit];
Console.WriteLine("Initialization started...");
Parallel.For(0, limit, i => {
if (i % 2 == 0) {
primeArray[i] = false;
} else {
primeArray[i] = true;
}
}
);
Console.WriteLine("Initialization finished...");
/*for (int i = 0; i < limit; i++) {
if (i % 2 == 0) {
primeArray[i] = false;
} else {
primeArray[i] = true;
}
}*/
int sqrtLimit = (int)Math.Sqrt(limit);
Console.WriteLine("Operation started...");
Parallel.For(3, sqrtLimit, i => {
lock (this) {
if (primeArray[i]) {
for (int j = i * i; j < limit; j += i) {
primeArray[j] = false;
}
}
}
}
);
Console.WriteLine("Operation finished...");
/*for (int i = 3; i < sqrtLimit; i += 2) {
if (primeArray[i]) {
for (int j = i * i; j < limit; j += i) {
primeArray[j] = false;
}
}
}*/
//primeList.AddLast(2)开发者_StackOverflow社区;
int count = 1;
Console.WriteLine("Counting started...");
Parallel.For(3, limit, i => {
lock (this) {
if (primeArray[i]) {
//primeList.AddLast(i);
count++;
}
}
}
);
Console.WriteLine("Counting finished...");
Console.WriteLine(count);
/*for (int i = 3; i < limit; i++) {
if (primeArray[i]) {
primeList.AddLast(i);
}
}*/
return primeList;
}
Thank you.
Edited:
My answer to the question is: Yes, you can definitely use the Task Parallel Library (TPL) to find the primes to one billion faster. The given code(s) in the question is slow because it isn't efficiently using memory or multiprocessing, and final output also isn't efficient.
So other than just multiprocessing, there are a huge number of things you can do to speed up the Sieve of Eratosthenese, as follows:
- You sieve all numbers, even and odd, which both uses more memory (one billion bytes for your range of one billion) and is slower due to the unnecessary processing. Just using the fact that two is the only even prime so making the array represent only odd primes would half the memory requirements and reduce the number of composite number cull operations by over a factor of two so that the operation might take something like 20 seconds on your machine for primes to a billion.
- Part of the reason that composite number culling over such a huge memory array is so slow is that it greatly exceeds the CPU cache sizes so that many memory accesses are to main memory in a somewhat random fashion meaning that culling a given composite number representation can take over a hundred CPU clock cycles, whereas if they were all in the L1 cache it would only take one cycle and in the L2 cache only about four cycles; not all accesses take the worst case times, but this definitely slows the processing. Using a bit packed array to represent the prime candidates will reduce the use of memory by a factor of eight and make the worst case accesses less common. While there will be a computational overhead to accessing individual bits, you will find there is a net gain as the time saving in reducing average memory access time will be greater than this cost. The simple way to implement this is to use a BitArray rather than an array of bool. Writing your own bit accesses using shift and "and" operations will be more efficient than use of the BitArray class. You will find a slight saving using BitArray and another factor of two doing your own bit operations for a single threaded performance of perhaps about ten or twelve seconds with this change.
- Your output of the count of primes found is not very efficient as it requires an array access and an if condition per candidate prime. Once you have the sieve buffer as an array packed word array of bits, you can do this much more efficiently with a counting Look Up Table (LUT) which eliminates the if condition and only needs two array accesses per bit packed word. Doing this, the time to count becomes a negligible part of the work as compared to the time to cull composite numbers, for a further saving to get down to perhaps eight seconds for the count of the primes to one billion.
- Further reductions in the number of processed prime candidates can be the result of applying wheel factorization, which removes say the factors of the primes 2, 3, and 5 from the processing and by adjusting the method of bit packing can also increase the effective range of a given size bit buffer by a factor of another about two. This can reduce the number of composite number culling operations by another huge factor of up to over three times, although at the cost of further computational complexity.
- In order to further reduce memory use, making memory accesses even more efficient, and preparing the way for multiprocessing per page segment, one can divide the work into pages that are no larger than the L1 or L2 cache sizes. This requires that one keep a base primes table of all the primes up to the square root of the maximum prime candidate and recomputes the starting address parameters of each of the base primes used in culling across a given page segment, but this is still more efficient than using huge culling arrays. An added benefit to implementing this page segmenting is that one then does not have to specify the upper sieving limit in advance but rather can just extend the base primes as necessary as further upper pages are processed. With all of the optimizations to this point, you can likely produce the count of primes up to one billion in about 2.5 seconds.
- Finally, one can put the final touches on multiprocessing the page segments using TPL or Threads, which using a buffer size of about the L2 cache size (per core) will produce an addition gain of a factor of two on your dual core non Hyper Threaded (HT) older processor as the Intel E7500 Core2Duo for an execute time to find the number of primes to one billion of about 1.25 seconds or so.
I have implemented a multi-threaded Sieve of Eratosthenes as an answer to another thread to show there isn't any advantage to the Sieve of Atkin over the Sieve of Eratosthenes. It uses the Task Parallel Library (TPL) as in Tasks and TaskFactory so requires at least DotNet Framework 4. I have further tweaked that code using all of the optimizations discussed above as an alternate answer to the same quesion. I re-post that tweaked code here with added comments and easier-to-read formatting, as follows:
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
class UltimatePrimesSoE : IEnumerable<ulong> {
#region const and static readonly field's, private struct's and classes
//one can get single threaded performance by setting NUMPRCSPCS = 1
static readonly uint NUMPRCSPCS = (uint)Environment.ProcessorCount + 1;
//the L1CACHEPOW can not be less than 14 and is usually the two raised to the power of the L1 or L2 cache
const int L1CACHEPOW = 14, L1CACHESZ = (1 << L1CACHEPOW), MXPGSZ = L1CACHESZ / 2; //for buffer ushort[]
const uint CHNKSZ = 17; //this times BWHLWRDS (below) times two should not be bigger than the L2 cache in bytes
//the 2,3,57 factorial wheel increment pattern, (sum) 48 elements long, starting at prime 19 position
static readonly byte[] WHLPTRN = { 2,3,1,3,2,1,2,3,3,1,3,2,1,3,2,3,4,2,1,2,1,2,4,3,
2,3,1,2,3,1,3,3,2,1,2,3,1,3,2,1,2,1,5,1,5,1,2,1 }; const uint FSTCP = 11;
static readonly byte[] WHLPOS; static readonly byte[] WHLNDX; //look up wheel position from index and vice versa
static readonly byte[] WHLRNDUP; //to look up wheel rounded up index positon values, allow for overflow in size
static readonly uint WCRC = WHLPTRN.Aggregate(0u, (acc, n) => acc + n); //small wheel circumference for odd numbers
static readonly uint WHTS = (uint)WHLPTRN.Length; static readonly uint WPC = WHTS >> 4; //number of wheel candidates
static readonly byte[] BWHLPRMS = { 2,3,5,7,11,13,17 }; const uint FSTBP = 19; //big wheel primes, following prime
//the big wheel circumference expressed in number of 16 bit words as in a minimum bit buffer size
static readonly uint BWHLWRDS = BWHLPRMS.Aggregate(1u, (acc, p) => acc * p) / 2 / WCRC * WHTS / 16;
//page size and range as developed from the above
static readonly uint PGSZ = MXPGSZ / BWHLWRDS * BWHLWRDS; static readonly uint PGRNG = PGSZ * 16 / WHTS * WCRC;
//buffer size (multiple chunks) as produced from the above
static readonly uint BFSZ = CHNKSZ * PGSZ, BFRNG = CHNKSZ * PGRNG; //number of uints even number of caches in chunk
static readonly ushort[] MCPY; //a Master Copy page used to hold the lower base primes preculled version of the page
struct Wst { public ushort msk; public byte mlt; public byte xtr; public ushort nxt; }
static readonly byte[] PRLUT; /*Wheel Index Look Up Table */ static readonly Wst[] WSLUT; //Wheel State Look Up Table
static readonly byte[] CLUT; // a Counting Look Up Table for very fast counting of primes
class Bpa { //very efficient auto-resizing thread-safe read-only indexer class to hold the base primes array
byte[] sa = new byte[0]; uint lwi = 0, lpd = 0; object lck = new object();
public uint this[uint i] {
get {
if (i >= this.sa.Length) lock (this.lck) {
var lngth = this.sa.Length; while (i >= lngth) {
var bf = (ushort[])MCPY.Clone(); if (lngth == 0) {
for (uint bi = 0, wi = 0, w = 0, msk = 0x8000, v = 0; w < bf.Length;
bi += WHLPTRN[wi++], wi = (wi >= WHTS) ? 0 : wi) {
if (msk >= 0x8000) { msk = 1; v = bf[w++]; } else msk <<= 1;
if ((v & msk) == 0) {
var p = FSTBP + (bi + bi); var k = (p * p - FSTBP) >> 1;
if (k >= PGRNG) break; var pd = p / WCRC; var kd = k / WCRC; var kn = WHLNDX[k - kd * WCRC];
for (uint wrd = kd * WPC + (uint)(kn >> 4), ndx = wi * WHTS + kn; wrd < bf.Length; ) {
var st = WSLUT[ndx]; bf[wrd] |= st.msk; wrd += st.mlt * pd + st.xtr; ndx = st.nxt;
}
}
}
}
else { this.lwi += PGRNG; cullbf(this.lwi, bf); }
var c = count(PGRNG, bf); var na = new byte[lngth + c]; sa.CopyTo(na, 0);
for (uint p = FSTBP + (this.lwi << 1), wi = 0, w = 0, msk = 0x8000, v = 0;
lngth < na.Length; p += (uint)(WHLPTRN[wi++] << 1), wi = (wi >= WHTS) ? 0 : wi) {
if (msk >= 0x8000) { msk = 1; v = bf[w++]; } else msk <<= 1; if ((v & msk) == 0) {
var pd = p / WCRC; na[lngth++] = (byte)(((pd - this.lpd) << 6) + wi); this.lpd = pd;
}
} this.sa = na;
}
} return this.sa[i];
}
}
}
static readonly Bpa baseprms = new Bpa(); //the base primes array using the above class
struct PrcsSpc { public Task tsk; public ushort[] buf; } //used for multi-threading buffer array processing
#endregion
#region private static methods
static int count(uint bitlim, ushort[] buf) { //very fast counting method using the CLUT look up table
if (bitlim < BFRNG) {
var addr = (bitlim - 1) / WCRC; var bit = WHLNDX[bitlim - addr * WCRC] - 1; addr *= WPC;
for (var i = 0; i < 3; ++i) buf[addr++] |= (ushort)((unchecked((ulong)-2) << bit) >> (i << 4));
}
var acc = 0; for (uint i = 0, w = 0; i < bitlim; i += WCRC)
acc += CLUT[buf[w++]] + CLUT[buf[w++]] + CLUT[buf[w++]]; return acc;
}
static void cullbf(ulong lwi, ushort[] b) { //fast buffer segment culling method using a Wheel State Look Up Table
ulong nlwi = lwi;
for (var i = 0u; i < b.Length; nlwi += PGRNG, i += PGSZ) MCPY.CopyTo(b, i); //copy preculled lower base primes.
for (uint i = 0, pd = 0; ; ++i) {
pd += (uint)baseprms[i] >> 6;
var wi = baseprms[i] & 0x3Fu; var wp = (uint)WHLPOS[wi]; var p = pd * WCRC + PRLUT[wi];
var k = ((ulong)p * (ulong)p - FSTBP) >> 1;
if (k >= nlwi) break; if (k < lwi) {
k = (lwi - k) % (WCRC * p);
if (k != 0) {
var nwp = wp + (uint)((k + p - 1) / p); k = (WHLRNDUP[nwp] - wp) * p - k;
}
}
else k -= lwi; var kd = k / WCRC; var kn = WHLNDX[k - kd * WCRC];
for (uint wrd = (uint)kd * WPC + (uint)(kn >> 4), ndx = wi * WHTS + kn; wrd < b.Length; ) {
var st = WSLUT[ndx]; b[wrd] |= st.msk; wrd += st.mlt * pd + st.xtr; ndx = st.nxt;
}
}
}
static Task cullbftsk(ulong lwi, ushort[] b, Action<ushort[]> f) { // forms a task of the cull buffer operaion
return Task.Factory.StartNew(() => { cullbf(lwi, b); f(b); });
}
//iterates the action over each page up to the page including the top_number,
//making an adjustment to the top limit for the last page.
//this method works for non-dependent actions that can be executed in any order.
static void IterateTo(ulong top_number, Action<ulong, uint, ushort[]> actn) {
PrcsSpc[] ps = new PrcsSpc[NUMPRCSPCS]; for (var s = 0u; s < NUMPRCSPCS; ++s) ps[s] = new PrcsSpc {
buf = new ushort[BFSZ],
tsk = Task.Factory.StartNew(() => { })
};
var topndx = (top_number - FSTBP) >> 1; for (ulong ndx = 0; ndx <= topndx; ) {
ps[0].tsk.Wait(); var buf = ps[0].buf; for (var s = 0u; s < NUMPRCSPCS - 1; ++s) ps[s] = ps[s + 1];
var lowi = ndx; var nxtndx = ndx + BFRNG; var lim = topndx < nxtndx ? (uint)(topndx - ndx + 1) : BFRNG;
ps[NUMPRCSPCS - 1] = new PrcsSpc { buf = buf, tsk = cullbftsk(ndx, buf, (b) => actn(lowi, lim, b)) };
ndx = nxtndx;
} for (var s = 0u; s < NUMPRCSPCS; ++s) ps[s].tsk.Wait();
}
//iterates the predicate over each page up to the page where the predicate paramenter returns true,
//this method works for dependent operations that need to be executed in increasing order.
//it is somewhat slower than the above as the predicate function is executed outside the task.
static void IterateUntil(Func<ulong, ushort[], bool> prdct) {
PrcsSpc[] ps = new PrcsSpc[NUMPRCSPCS];
for (var s = 0u; s < NUMPRCSPCS; ++s) {
var buf = new ushort[BFSZ];
ps[s] = new PrcsSpc { buf = buf, tsk = cullbftsk(s * BFRNG, buf, (bfr) => { }) };
}
for (var ndx = 0UL; ; ndx += BFRNG) {
ps[0].tsk.Wait(); var buf = ps[0].buf; var lowi = ndx; if (prdct(lowi, buf)) break;
for (var s = 0u; s < NUMPRCSPCS - 1; ++s) ps[s] = ps[s + 1];
ps[NUMPRCSPCS - 1] = new PrcsSpc {
buf = buf,
tsk = cullbftsk(ndx + NUMPRCSPCS * BFRNG, buf, (bfr) => { })
};
}
}
#endregion
#region initialization
/// <summary>
/// the static constructor is used to initialize the static readonly arrays.
/// </summary>
static UltimatePrimesSoE() {
WHLPOS = new byte[WHLPTRN.Length + 1]; //to look up wheel position index from wheel index
for (byte i = 0, acc = 0; i < WHLPTRN.Length; ++i) { acc += WHLPTRN[i]; WHLPOS[i + 1] = acc; }
WHLNDX = new byte[WCRC + 1]; for (byte i = 1; i < WHLPOS.Length; ++i) {
for (byte j = (byte)(WHLPOS[i - 1] + 1); j <= WHLPOS[i]; ++j) WHLNDX[j] = i;
}
WHLRNDUP = new byte[WCRC * 2]; for (byte i = 1; i < WHLRNDUP.Length; ++i) {
if (i > WCRC) WHLRNDUP[i] = (byte)(WCRC + WHLPOS[WHLNDX[i - WCRC]]); else WHLRNDUP[i] = WHLPOS[WHLNDX[i]];
}
Func<ushort, int> nmbts = (v) => { var acc = 0; while (v != 0) { acc += (int)v & 1; v >>= 1; } return acc; };
CLUT = new byte[1 << 16]; for (var i = 0; i < CLUT.Length; ++i) CLUT[i] = (byte)nmbts((ushort)(i ^ -1));
PRLUT = new byte[WHTS]; for (var i = 0; i < PRLUT.Length; ++i) {
var t = (uint)(WHLPOS[i] * 2) + FSTBP; if (t >= WCRC) t -= WCRC; if (t >= WCRC) t -= WCRC; PRLUT[i] = (byte)t;
}
WSLUT = new Wst[WHTS * WHTS]; for (var x = 0u; x < WHTS; ++x) {
var p = FSTBP + 2u * WHLPOS[x]; var pr = p % WCRC;
for (uint y = 0, pos = (p * p - FSTBP) / 2; y < WHTS; ++y) {
var m = WHLPTRN[(x + y) % WHTS];
pos %= WCRC; var posn = WHLNDX[pos]; pos += m * pr; var nposd = pos / WCRC; var nposn = WHLNDX[pos - nposd * WCRC];
WSLUT[x * WHTS + posn] = new Wst {
msk = (ushort)(1 << (int)(posn & 0xF)),
mlt = (byte)(m * WPC),
xtr = (byte)(WPC * nposd + (nposn >> 4) - (posn >> 4)),
nxt = (ushort)(WHTS * x + nposn)
};
}
}
MCPY = new ushort[PGSZ]; foreach (var lp in BWHLPRMS.SkipWhile(p => p < FSTCP)) {
var p = (uint)lp;
var k = (p * p - FSTBP) >> 1; var pd = p / WCRC; var kd = k / WCRC; var kn = WHLNDX[k - kd * WCRC];
for (uint w = kd * WPC + (uint)(kn >> 4), ndx = WHLNDX[(2 * WCRC + p - FSTBP) / 2] * WHTS + kn; w < MCPY.Length; ) {
var st = WSLUT[ndx]; MCPY[w] |= st.msk; w += st.mlt * pd + st.xtr; ndx = st.nxt;
}
}
}
#endregion
#region public class
// this class implements the enumeration (IEnumerator).
// it works by farming out tasks culling pages, which it then processes in order by
// enumerating the found primes as recognized by the remaining non-composite bits
// in the cull page buffers.
class nmrtr : IEnumerator<ulong>, IEnumerator, IDisposable {
PrcsSpc[] ps = new PrcsSpc[NUMPRCSPCS]; ushort[] buf;
public nmrtr() {
for (var s = 0u; s < NUMPRCSPCS; ++s) ps[s] = new PrcsSpc { buf = new ushort[BFSZ] };
for (var s = 1u; s < NUMPRCSPCS; ++s) {
ps[s].tsk = cullbftsk((s - 1u) * BFRNG, ps[s].buf, (bfr) => { });
} buf = ps[0].buf;
}
ulong _curr, i = (ulong)-WHLPTRN[WHTS - 1]; int b = -BWHLPRMS.Length - 1; uint wi = WHTS - 1; ushort v, msk = 0;
public ulong Current { get { return this._curr; } } object IEnumerator.Current { get { return this._curr; } }
public bool MoveNext() {
if (b < 0) {
if (b == -1) b += buf.Length; //no yield!!! so automatically comes around again
else { this._curr = (ulong)BWHLPRMS[BWHLPRMS.Length + (++b)]; return true; }
}
do {
i += WHLPTRN[wi++]; if (wi >= WHTS) wi = 0; if ((this.msk <<= 1) == 0) {
if (++b >= BFSZ) {
b = 0; for (var prc = 0; prc < NUMPRCSPCS - 1; ++prc) ps[prc] = ps[prc + 1];
ps[NUMPRCSPCS - 1u].buf = buf;
ps[NUMPRCSPCS - 1u].tsk = cullbftsk(i + (NUMPRCSPCS - 1u) * BFRNG, buf, (bfr) => { });
ps[0].tsk.Wait(); buf = ps[0].buf;
} v = buf[b]; this.msk = 1;
}
}
while ((v & msk) != 0u); _curr = FSTBP + i + i; return true;
}
public void Reset() { throw new Exception("Primes enumeration reset not implemented!!!"); }
public void Dispose() { }
}
#endregion
#region public instance method and associated sub private method
/// <summary>
/// Gets the enumerator for the primes.
/// </summary>
/// <returns>The enumerator of the primes.</returns>
public IEnumerator<ulong> GetEnumerator() { return new nmrtr(); }
/// <summary>
/// Gets the enumerator for the primes.
/// </summary>
/// <returns>The enumerator of the primes.</returns>
IEnumerator IEnumerable.GetEnumerator() { return new nmrtr(); }
#endregion
#region public static methods
/// <summary>
/// Gets the count of primes up the number, inclusively.
/// </summary>
/// <param name="top_number">The ulong top number to check for prime.</param>
/// <returns>The long number of primes found.</returns>
public static long CountTo(ulong top_number) {
if (top_number < FSTBP) return BWHLPRMS.TakeWhile(p => p <= top_number).Count();
var cnt = (long)BWHLPRMS.Length;
IterateTo(top_number, (lowi, lim, b) => { Interlocked.Add(ref cnt, count(lim, b)); }); return cnt;
}
/// <summary>
/// Gets the sum of the primes up the number, inclusively.
/// </summary>
/// <param name="top_number">The uint top number to check for prime.</param>
/// <returns>The ulong sum of all the primes found.</returns>
public static ulong SumTo(uint top_number) {
if (top_number < FSTBP) return (ulong)BWHLPRMS.TakeWhile(p => p <= top_number).Aggregate(0u, (acc, p) => acc += p);
var sum = (long)BWHLPRMS.Aggregate(0u, (acc, p) => acc += p);
Func<ulong, uint, ushort[], long> sumbf = (lowi, bitlim, buf) => {
var acc = 0L; for (uint i = 0, wi = 0, msk = 0x8000, w = 0, v = 0; i < bitlim;
i += WHLPTRN[wi++], wi = wi >= WHTS ? 0 : wi) {
if (msk >= 0x8000) { msk = 1; v = buf[w++]; } else msk <<= 1;
if ((v & msk) == 0) acc += (long)(FSTBP + ((lowi + i) << 1));
} return acc;
};
IterateTo(top_number, (pos, lim, b) => { Interlocked.Add(ref sum, sumbf(pos, lim, b)); }); return (ulong)sum;
}
/// <summary>
/// Gets the prime number at the zero based index number given.
/// </summary>
/// <param name="index">The long zero-based index number for the prime.</param>
/// <returns>The ulong prime found at the given index.</returns>
public static ulong ElementAt(long index) {
if (index < BWHLPRMS.Length) return (ulong)BWHLPRMS.ElementAt((int)index);
long cnt = BWHLPRMS.Length; var ndx = 0UL; var cycl = 0u; var bit = 0u; IterateUntil((lwi, bfr) => {
var c = count(BFRNG, bfr); if ((cnt += c) < index) return false; ndx = lwi; cnt -= c; c = 0;
do { var w = cycl++ * WPC; c = CLUT[bfr[w++]] + CLUT[bfr[w++]] + CLUT[bfr[w]]; cnt += c; } while (cnt < index);
cnt -= c; var y = (--cycl) * WPC; ulong v = ((ulong)bfr[y + 2] << 32) + ((ulong)bfr[y + 1] << 16) + bfr[y];
do { if ((v & (1UL << ((int)bit++))) == 0) ++cnt; } while (cnt <= index); --bit; return true;
}); return FSTBP + ((ndx + cycl * WCRC + WHLPOS[bit]) << 1);
}
#endregion
}
The above code will enumerate the primes to one billion in about 1.55 seconds on a four core (eight threads including HT) i7-2700K (3.5 GHz) and your E7500 will be perhaps up to four times slower due to less threads and slightly less clock speed. About three quarters of that time is just the time to run the enumeration MoveNext() method and Current property, so I provide the public static methods "CountTo", "SumTo" and "ElementAt" to compute the number or sum of primes in a range and the nth zero-based prime, respectively, without using enumeration. Using the UltimatePrimesSoE.CountTo(1000000000) static method produces 50847534 in about 0.32 seconds on my machine, so shouldn't take longer than about 1.28 seconds on the Intel E7500.
EDIT_ADD: Interestingly, this code runs 30% faster in x86 32-bit mode than in x64 64-bit mode, likely due to avoiding the slight extra overhead of extending the uint32 numbers to ulong's. All of the above timings are for 64-bit mode. END_EDIT_ADD
At almost 300 (dense) lines of code, this implementation isn't simple, but that's the cost of doing all of the described optimizations that make this code so efficient. It isn't all that many more lines of code that the other answer by Aaron Murgatroyd; although his code is less dense, his code is also about four times as slow. In fact, almost all of the execution time is spent in the final "for loop" of the my code's private static "cullbf" method, which is only four statements long plus the range condition check; all the rest of the code is just in support of repeated applications of that loop.
The reasons that this code is faster than that other answer are for the same reasons that this code is faster than your code other than he does the Step (1) optimization of only processing odd prime candidates. His use of multiprocessing is almost completely ineffective as in only a 30% advantage rather than the factor of four that should be possible on a true four core CPU when applied correctly as it threads per prime rather than for all primes over small pages, and his use of unsafe pointer array access as a method of eliminating the DotNet computational cost of an array bound check per loop actually slows the code compared to just using arrays directly including the bounds check as the DotNet Just In Time (JIT) compiler produces quite inefficient code for pointer access. In addition, his code enumerates the primes just as my code can do, which enumeration has a 10's of CPU clock cycle cost per enumerated prime, which is also slightly worse in his case as he uses the built-in C# iterators which are somewhat less efficient than my "roll-your-own" IEnumerator interface. However, for maximum speed, we should avoid enumeration entirely; however even his supplied "Count" instance method uses a "foreach" loop which means enumeration.
In summary, this answer code produces prime answers about 25 times faster than your question's code on your E7500 CPU (many more times faster on a CPU with more cores/threads) uses much less memory, and is not limited to smaller prime ranges of about the 32-bit number range, but at a cost of increased code complexity.
My implementation with multi threading (.NET 4.0 required):
using System;
using System.Collections;
using System.Collections.Generic;
using System.Threading.Tasks;
namespace PrimeGenerator
{
// The block element type for the bit array,
// use any unsigned value. WARNING: UInt64 is
// slower even on x64 architectures.
using BitArrayType = System.UInt32;
// This should never be any bigger than 256 bits - leave as is.
using BitsPerBlockType = System.Byte;
// The prime data type, this can be any unsigned value, the limit
// of this type determines the limit of Prime value that can be
// found. WARNING: UInt64 is slower even on x64 architectures.
using PrimeType = System.UInt32;
/// <summary>
/// Calculates prime number using the Sieve of Eratosthenes method.
/// </summary>
/// <example>
/// <code>
/// var lpPrimes = new Eratosthenes(1e7);
/// foreach (UInt32 luiPrime in lpPrimes)
/// Console.WriteLine(luiPrime);
/// </example>
public class Eratosthenes : IEnumerable<PrimeType>
{
#region Constants
/// <summary>
/// Constant for number of bits per block, calculated based on size of BitArrayType.
/// </summary>
const BitsPerBlockType cbBitsPerBlock = sizeof(BitArrayType) * 8;
#endregion
#region Protected Locals
/// <summary>
/// The limit for the maximum prime value to find.
/// </summary>
protected readonly PrimeType mpLimit;
/// <summary>
/// True if the class is multi-threaded
/// </summary>
protected readonly bool mbThreaded;
/// <summary>
/// The current bit array where a set bit means
/// the odd value at that location has been determined
/// to not be prime.
/// </summary>
protected BitArrayType[] mbaOddNotPrime;
#endregion
#region Initialisation
/// <summary>
/// Create Sieve of Eratosthenes generator.
/// </summary>
/// <param name="limit">The limit for the maximum prime value to find.</param>
/// <param name="threaded">True if threaded, false otherwise.</param>
public Eratosthenes(PrimeType limit, bool threaded)
{
// Check limit range
if (limit > PrimeType.MaxValue - (PrimeType)Math.Sqrt(PrimeType.MaxValue))
throw new ArgumentOutOfRangeException();
mbThreaded = threaded;
mpLimit = limit;
FindPrimes();
}
/// <summary>
/// Create Sieve of Eratosthenes generator in multi-threaded mode.
/// </summary>
/// <param name="limit">The limit for the maximum prime value to find.</param>
public Eratosthenes(PrimeType limit)
: this(limit, true)
{
}
#endregion
#region Private Methods
/// <summary>
/// Calculates compartment indexes for a multi-threaded operation.
/// </summary>
/// <param name="startInclusive">The inclusive starting index.</param>
/// <param name="endExclusive">The exclusive ending index.</param>
/// <param name="threads">The number of threads.</param>
/// <returns>An array of thread elements plus 1 containing the starting and exclusive ending indexes to process for each thread.</returns>
private PrimeType[] CalculateCompartments(PrimeType startInclusive, PrimeType endExclusive, ref int threads)
{
if (threads == 0) threads = 1;
if (threads == -1) threads = Environment.ProcessorCount;
if (threads > endExclusive - startInclusive) threads = (int)(endExclusive - startInclusive);
PrimeType[] liThreadIndexes = new PrimeType[threads + 1];
liThreadIndexes[threads] = endExclusive;
PrimeType liIndexesPerThread = (endExclusive - startInclusive) / (PrimeType)threads;
for (PrimeType liCount = 0; liCount < threads; liCount++)
liThreadIndexes[liCount] = liCount * liIndexesPerThread;
return liThreadIndexes;
}
/// <summary>
/// Executes a simple for loop in parallel but only creates
/// a set amount of threads breaking the work up evenly per thread,
/// calling the body only once per thread, this is different
/// to the .NET 4.0 For method which calls the body for each index.
/// </summary>
/// <typeparam name="ParamType">The type of parameter to pass to the body.</typeparam>
/// <param name="startInclusive">The starting index.</param>
/// <param name="endExclusive">The exclusive ending index.</param>
/// <param name="parameter">The parameter to pass to the body.</param>
/// <param name="body">The body to execute per thread.</param>
/// <param name="threads">The number of threads to execute.</param>
private void For<ParamType>(
PrimeType startInclusive, PrimeType endExclusive, ParamType parameter,
Action<PrimeType, PrimeType, ParamType> body,
int threads)
{
PrimeType[] liThreadIndexes = CalculateCompartments(startInclusive, endExclusive, ref threads);
if (threads > 1)
Parallel.For(
0, threads, new System.Threading.Tasks.ParallelOptions(),
(liThread) => { body(liThreadIndexes[liThread], liThreadIndexes[liThread + 1], parameter); }
);
else
body(startInclusive, endExclusive, parameter);
}
/// <summary>
/// Finds the prime number within range.
/// </summary>
private unsafe void FindPrimes()
{
// Allocate bit array.
mbaOddNotPrime = new BitArrayType[(((mpLimit >> 1) + 1) / cbBitsPerBlock) + 1];
// Cache Sqrt of limit.
PrimeType lpSQRT = (PrimeType)Math.Sqrt(mpLimit);
int liThreads = Environment.ProcessorCount;
if (!Threaded) liThreads = 0;
// Fix the bit array for pointer access
fixed (BitArrayType* lpbOddNotPrime = &mbaOddNotPrime[0])
{
IntPtr lipBits = (IntPtr)lpbOddNotPrime;
// Scan primes up to lpSQRT
for (PrimeType lpN = 3; lpN <= lpSQRT; lpN += 2)
{
// If the current bit value for index lpN is cleared (prime)
if (
(
lpbOddNotPrime[(lpN >> 1) / cbBitsPerBlock] &
((BitArrayType)1 << (BitsPerBlockType)((lpN >> 1) % cbBitsPerBlock))
) == 0
)
{
// If multi-threaded
if (liThreads > 1)
{
// Leave it cleared (prime) and mark all multiples of lpN*2 from lpN*lpN as not prime
For<PrimeType>(
0, ((mpLimit - (lpN * lpN)) / (lpN << 1)) + 1, lpN,
(start, end, n) =>
{
BitArrayType* lpbBits = (BitArrayType*)lipBits;
PrimeType lpM = n * n + (start * (n << 1));
for (PrimeType lpCount = start; lpCount < end; lpCount++)
{
// Set as not prime
lpbBits[(lpM >> 1) / cbBitsPerBlock] |=
(BitArrayType)((BitArrayType)1 << (BitsPerBlockType)((lpM >> 1) % cbBitsPerBlock));
lpM += n << 1;
}
},
liThreads);
}
else
{
// Leave it cleared (prime) and mark all multiples of lpN*2 from lpN*lpN as not prime
for (PrimeType lpM = lpN * lpN; lpM <= mpLimit; lpM += lpN<<1)
// Set as not prime
lpbOddNotPrime[(lpM >> 1) / cbBitsPerBlock] |=
(BitArrayType)((BitArrayType)1 << (BitsPerBlockType)((lpM >> 1) % cbBitsPerBlock));
}
}
}
}
}
/// <summary>
/// Gets a bit value by index.
/// </summary>
/// <param name="bits">The blocks containing the bits.</param>
/// <param name="index">The index of the bit.</param>
/// <returns>True if bit is set, false if cleared.</returns>
private bool GetBitSafe(BitArrayType[] bits, PrimeType index)
{
return (bits[index / cbBitsPerBlock] & ((BitArrayType)1 << (BitsPerBlockType)(index % cbBitsPerBlock))) != 0;
}
#endregion
#region Public Properties
/// <summary>
/// Gets whether this class is multi-threaded or not.
/// </summary>
public bool Threaded
{
get
{
return mbThreaded;
}
}
/// <summary>
/// Get the limit for the maximum prime value to find.
/// </summary>
public PrimeType Limit
{
get
{
return mpLimit;
}
}
/// <summary>
/// Returns the number of primes found in the range.
/// </summary>
public PrimeType Count
{
get
{
PrimeType lptCount = 0;
foreach (PrimeType liPrime in this)
lptCount++;
return lptCount;
}
}
/// <summary>
/// Determines if a value in range is prime or not.
/// </summary>
/// <param name="test">The value to test for primality.</param>
/// <returns>True if the value is prime, false otherwise.</returns>
public bool this[PrimeType test]
{
get
{
if (test > mpLimit) throw new ArgumentOutOfRangeException();
if (test <= 1) return false;
if (test == 2) return true;
if ((test & 1) == 0) return false;
return !GetBitSafe(mbaOddNotPrime, test >> 1);
}
}
#endregion
#region Public Methods
/// <summary>
/// Gets the enumerator for the primes.
/// </summary>
/// <returns>The enumerator of the primes.</returns>
public IEnumerator<PrimeType> GetEnumerator()
{
// Two always prime.
yield return 2;
// Start at first block, second MSB.
int liBlock = 0;
byte lbBit = 1;
BitArrayType lbaCurrent = mbaOddNotPrime[0] >> 1;
// For each value in range stepping in incrments of two for odd values.
for (PrimeType lpN = 3; lpN <= mpLimit; lpN += 2)
{
// If current bit not set then value is prime.
if ((lbaCurrent & 1) == 0)
yield return lpN;
// Move to NSB.
lbaCurrent >>= 1;
// Increment bit value.
lbBit++;
// If block is finished.
if (lbBit == cbBitsPerBlock)
{
// Move to first bit of next block.
lbBit = 0;
liBlock++;
lbaCurrent = mbaOddNotPrime[liBlock];
}
}
}
#endregion
#region IEnumerable<PrimeType> Implementation
/// <summary>
/// Gets the enumerator for the primes.
/// </summary>
/// <returns></returns>
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
#endregion
}
}
The multi-threading works by threading the inner most loop, this way there are no data locking issues because the multiple threads work with a subset of the array and dont overlap for each job done.
Seems to be quite fast, can generate all primes up to a limit of 1,000,000,000 on an AMD Phenom II X4 965 processor in 5.8 seconds. Special implementations like the Atkins are faster, but this is fast for the Sieve of Eratosthenes.
A while back I tried to implement The Sieve of Atkin in parallell. It was a failure. I haven't done any deeper research but it seems that both Sieve Of Eratosthenes and The Sieve of Atkin are hard to scale over multiple CPUs because the implementations I've seen uses a list of integers that is shared. Shared state is a heavy anchor to carry when you try to scale over multiple CPUs.
精彩评论