开发者

Best Practice: Protecting Personally Identifiable Data in a ASP.NET / SQL Server 2008 Environment

Thanks to a SQL injection vulnerability found last week, some of my recommendations are being investigated at work. We recently re-did an application which stores personally identifiable information whose disclosure could lead to identity theft. While we read some of the data on a regular basis, the restricted 开发者_开发问答data we only need a couple of times a year and then only two employees need it.

I've read up on SQL Server 2008's encryption function, but I'm not convinced that's the route I want to go. My problem ultimately boils down to the fact that we're either using symmetric keys or assymetric keys encrypted by a symmetric key. Thus it seems like a SQL injection attack could lead to a data leak. I realize permissions should prevent that, permissions should also prevent the leaking in the first place.

It seems to me the better method would be to asymmetrically encrypt the data in the web application. Then store the private key offline and have a fat client that they can run the few times a year they need to access the restricted data so the data could be decrypted on the client. This way, if the server get compromised, we don't leak old data although depending on what they do we may leak future data. I think the big disadvantage is this would require re-writing the web application and creating a new fat application (to pull the restricted data). Due to the recent problem, I can probably get the time allocated, so now would be the proper time to make the recommendation.

Do you have a better suggestion? Which method would you recommend? More importantly why?


Encryption in SQL is really only good for securing the data as it rests on the server, although that doesn't mean that it is unimportant. When you mention that a prime concern is injection attacks or the likes, my concern would be whether or not the database uses a single account (SQL or otherwise) to connect to the database, which would be common for a public internet site. If you use integrated authentication, or connect to SQL using the same credentials supplied to the application, then SQL's encryption might work fine.

However, if you're using a single login, SQL's encryption is going to manage encrypting and decrypting the data for you, based on your login. So, if your application is compromised, SQL may not be able to protect that data for you, as it implicitly decrypts it and doesn't know anything is wrong.

You may want to, as you suggested, encrypt/decrypt the data in the application, and store as bytes in the database. That way you control who can decrypt the data and when (for example, you could assign the key to decrypting this data to those few employees you mentioned that are in a specific role). You could look into Microsoft's Security Application Block, or Bouncy Castle, etc. for good encryption utilities. Just be careful about how you manage the key.

Update:

Although you could potentially use two connection strings: one normal, with no rights to the encrypted data, and one that has the key and the rights to the data. Then have your application use the appropriate connection when the user has the rights. Of course, that's pretty kludgy.


Some practices that we follow:

  1. Never use dynamic sql. It's completely unnecessary.

  2. Regardless of #1, always parameterize your queries. This alone will get rid of sql injection, but there are lots of other entry points.

  3. Use the least priviledged account you can for accessing the database server. This typically means the account should NOT have the ability to run ad hoc queries (see #1). It also means that it shouldn't have access to run any DDL statements (create, drop, ..).

  4. Don't trust the web application, much less any input received from a browser. Sanitize everything. Web App servers are cracked on a regular basis.

  5. We also deal with a lot of PII and are extremely strict (to the point of paranoia) on how the data is accessed and by whom. Everything that comes through the server is logged. To make sure this happens we only allow access to the database through stored procedures. The procs always test to see if the user account is even authorized to execute the query. Further they log when, who, and what. We do not have any mass delete queries at all.

  6. Our IDs are completely non-guessable. This is for every table in the system.

  7. We do not use ORM tools. They typically require way too much access to the database server to work right and we just aren't comfortable with that.

  8. We do background checks on the DBA's and our other production support people every 6 months. Access to production is tightly controlled and actively monitored. We don't allow contractors access to production for any reason and everything is code reviewed prior to being allowed into the code base.

  9. For the encrypted data, allow specific users access to the decryption keys. Change those keys often, as in once a month if possible.

  10. ALL data transfer between machines is encrypted. Kerberos between servers and desktops; SSL between IIS and browsers.

  11. Recognize and architect for the fact that a LOT of data theft is from internal employees. Either by actively hacking the system, actively granting unauthorized users access, or passively by installing crap (like IE 6) on their machines. Guess how Google got hacked.

The main question in your situation is identifying all of the parts that need access to the PII.

Things like how does the information get into your system? The main thing here is where does the initial encryption key get stored?


Your issue is key management. No matter how many way's you turn the problem around, you'll end up with one simple elementary fact: the service process needs access to the keys to encrypt the data (is important that is a background service because that implies it cannot obtain the root of the encryption hierarchy key from a human entered password whenever is needed). Therefore compromise of the process leads to compromise of the key(s). There are ways to obfuscate this issue, but no ways to truly hide it. To put this into perspective though, only a compromise of the SQL Server process itself could expose this problem, something which is significantly higher bar than a SQL Injection vulnerability.

You are trying to circumvent this problem by relying on the public key/private key asymmetry and use the public key to encrypt the data so that it can only be decrypted by the owner of the private key. So that the service does not need access to the private key, therefore if compromised it cannot be used to decrypt the data. Unfortunately this works only in theory. In the real world RSA encryption is so slow that is cannot be used for bulk data. This is why common RSA based encryption scheme uses a symmetric key to encrypt the data and encrypts the symmetric key with the RSA key.

My recommendation would be to stick with tried and tested approaches. Use a symmetric key to encrypt the data. Use an RSA key to encrypt the symmetric key(s). Have SQL Server own and control the RSA private key. Use the permission hierarchy to protect the RSA private key (really, there isn't anything better you could do). Use module signing to grant access to the encryption procedures. This way the ASP service itself does not even have the privileges to encrypt the data, it can only do so by the means of the signed encryption procedure. It would take significant 'creative' administration/coding mistakes from your colleagues to compromise such a scheme, significantly more than a mere 'operator error'. A system administrator would have an easier path, but any solution that is designed to circumvent a sysadmin is doomed.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜