Split matrix and rejoin
This is my first post. Apologies in advance if my question is dumb. I'm new to programming.
Ok, So I have a a matrix(eBpvalues)
in R that has 152720 rows and 2 columns.
I want to split into 10 separate matrices containing 15272 rows each.
I have tried this with:
> newmx <-split(as.data.frame(eBpvalues), rep(1开发者_如何学Go:10, each = 15272)))
> summary(newmx)
Length Class Mode
1 2 data.frame list
2 2 data.frame list
3 2 data.frame list
4 2 data.frame list
5 2 data.frame list
6 2 data.frame list
7 2 data.frame list
8 2 data.frame list
9 2 data.frame list
10 2 data.frame list
How would I go about joining these matrices side-by-side so I have a new matrix with 20 columns and 15272 rows?
Cheers,
Neil
You are almost there. An often used function in these situations is do.call
, which takes a function you want to apply and a list of data to apply it to. The function you want to apply is cbind
to column bind the 10 data frames/matrices together.
Taking you literally, we start with a matrix mat
(eBpvalues
in your Q), of appropriate size. Convert to a data frame:
mat <- matrix(rnorm(152720 * 2), ncol = 2)
df <- data.frame(mat)
An easy way of producing an indicator factor is via the gl()
function:
ind <- gl(10, 15272)
Then we have your split()
call:
newMat <- split(df, ind)
The last step is this, where we us do.call()
to apply cbind()
to the set of data frames in newMat
:
res <- do.call(cbind, newMat)
This gives us what you wanted (although you might need to tidy the column names up etc).
> str(res)
'data.frame': 15272 obs. of 20 variables:
$ 1.X1 : num -0.268 -0.8568 -0.0267 1.0894 1.5847 ...
$ 1.X2 : num 0.71 -0.298 0.359 0.97 -2.158 ...
$ 2.X1 : num -0.987 -0.222 2.991 0.443 0.228 ...
$ 2.X2 : num -2.343 -1.023 -1.48 1.47 0.758 ...
$ 3.X1 : num -0.305 -0.761 0.817 1.347 0.694 ...
$ 3.X2 : num -0.0915 0.4816 1.4662 -1.2668 -1.3523 ...
$ 4.X1 : num -0.678 -1.056 1.029 -0.468 0.836 ...
$ 4.X2 : num -0.656 -0.459 -0.965 -1.666 0.877 ...
$ 5.X1 : num -0.295 -1.255 1.395 -1.985 -1.71 ...
$ 5.X2 : num 1.141 1.177 -1.003 -0.29 -0.234 ...
$ 6.X1 : num -0.0548 1.8673 -1.5388 -1.1063 0.3923 ...
$ 6.X2 : num -1.399 0.57 0.367 -0.811 -2.434 ...
$ 7.X1 : num 0.389 -1.058 0.61 1.102 -0.063 ...
$ 7.X2 : num 0.854 1.251 1.095 -0.485 0.451 ...
$ 8.X1 : num -2.018 0.849 0.3 0.988 -1.993 ...
$ 8.X2 : num -1.23 -1.025 -0.546 1.674 0.588 ...
$ 9.X1 : num 0.814 0.726 1.04 0.985 1.781 ...
$ 9.X2 : num -1.094 -1.051 0.749 1.426 0.402 ...
$ 10.X1: num 0.3786 1.6131 -0.4149 0.0684 -0.815 ...
$ 10.X2: num 0.383 -0.136 -0.751 -0.164 0.434 ...
Using indices, you can easily do this without the split command, using the fact that R fills matrices columnwise.
A toy example:
> eBpvalues <- matrix(1:100,ncol=2) # a matrix with 2 cols and 50 values
> id <- c(1,11)+rep(0:9,each=2)
> id
[1] 1 11 2 12 3 13 4 14 5 15 6 16 7 17 8 18 9 19 10 20
> tt <- matrix(eBpvalues,ncol=20)[,id]
> tt # a matrix with the 2 cols split up and binded rowwise
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,] 1 51 6 56 11 61 16 66 21 71 26 76 31 81 36 86 41 91 46 96
[2,] 2 52 7 57 12 62 17 67 22 72 27 77 32 82 37 87 42 92 47 97
[3,] 3 53 8 58 13 63 18 68 23 73 28 78 33 83 38 88 43 93 48 98
[4,] 4 54 9 59 14 64 19 69 24 74 29 79 34 84 39 89 44 94 49 99
[5,] 5 55 10 60 15 65 20 70 25 75 30 80 35 85 40 90 45 95 50 100
This gives you a matrix again. If you use split, you can use Gavin's solution. This converts everything to dataframes, which can have unwanted side effects. Being quite a bit slower on large matrices for a start.
精彩评论