Lambda calculus help
So i'm totally stuck on this one part of a problem. It would be awesome if someone could help.........
Show that the term ZZ where Z is λz.λx. x(z z x) satisfie开发者_如何学JAVAs the requirement for fixed point combinators that ZZM =β M(ZZM).
This is completely trivial. You just apply the definition of β-reduction two times:
Z Z M = (λz.λx. x(z z x)) Z M > (λx. x(Z Z x)) M > M (Z Z M)
where > is the β-reduction.
Therefore Z Z M β-reduces to M (Z Z M) in two steps, hence Z Z M =β M (Z Z M).
精彩评论