Elegant implementation of circular singly-linked list in C?
Going through classic data structures and have stopped on linked lists.Just implemented a circular singly-linked list, but I'm under overwhelming impression that this list could be expressed in a more elegant manner, remove_node function in particular. Keeping in mind efficiency and code readability, could anybody present a more concise and efficient solution for singly-linked circular list?
#include <stdio.h>
#include <stdlib.h>
struct node{
struct node* next;
int value;
};
struct list{
struct node* head;
};
struct node* init_node(int value){
struct node* pnode;
if (!(pnode = (struct node*)malloc(sizeof(struct node)))){
return NULL;
}
else{
pnode->value = value;
}
return pnode;
}
struct list* init_list(){
struct list* plist;
if (!(plist = (struct list*)malloc(sizeof(struct list)))){
return NULL;
}
plist->head = NULL;
return plist;
}
void remove_node(struct list*a plist, int value){
struct node* current, *temp;
current = plist->head;
if (!(current)) return;
if ( current->value == value ){
if (current==current->next){
plist->head = NULL;
free(current);
}
else {
temp = current;
do {
current = current->next;
} while (current->next != plist->head);
current->next = plist->head->next;
plist->head = current->next;
free(temp);
}
}
else {
do {
if (current->next->value == value){
temp = current->next;
current->next = current->next->next;
free(temp);
}
current = current->next;
} while (current != plist->head);
}
}
void print_node(struct node* pnode){
printf("%d %p %p\n", pnode->value, pnode, pnode->next);
}
void print_list(struct list* plist){
struct node * current = plist->head;
if (!(current)) return;
if (current == plist->head->next){
print_node(current);
}
else{
do {
print_node(current);
current = current->next;
} while (current != plist->head);
}
}
void add_node(struct node* pnode,struct list* plist){
struct node* current;
struct node* temp;
if (plist->head == NULL){
plist->head = pnode;
plist->head->next = pnode;
}
else {
current = plist->head;
if (current == plist->head->next){
plist->head->next = pnode;
pnode-开发者_Python百科>next = plist->head;
}
else {
while(current->next!=plist->head)
current = current->next;
current->next = pnode;
pnode->next = plist->head;
}
}
}
Take a look at the circular linked list in the Linux kernel source: http://lxr.linux.no/linux+v2.6.36/include/linux/list.h
Its beauty derives from the fact that you don't have a special struct for your data to fit in the list, you only have to include the struct list_head *
in the struct you want to have as a list. The macros for accessing items in the list will handle the offset calculation to get from the struct list_head
pointer to your data.
A more verbose explanation of the linked list used in the kernel can be found at kernelnewbies.org/FAQ/LinkedLists (Sorry, I dont have enough karma to post two hyperlinks).
Edit: Well, the list is a double-linked list and not a single-linked one like you have, but you could adopt the concept and create your own single-linked list.
List processing (particularly of circular lists) gets way easier when you treat the list head like an element of the list (a so-called "sentinel"). A lot of special cases just disappear. You can use a dummy node for the sentinel, but if the next pointer is first in the struct, you don't need to do even that. The other big trick is to keep a pointer to the next pointer of the previous node (so you can modify it later) whenever you modify the list. Putting it all together, you get this:
struct node* get_sentinel(struct list* plist)
{
// use &plist->head itself as sentinel!
// (works because struct node starts with the next pointer)
return (struct node*) &plist->head;
}
struct list* init_list(){
struct list* plist;
if (!(plist = (struct list*)malloc(sizeof(struct list)))){
return NULL;
}
plist->head = get_sentinel(plist);
return plist;
}
void add_node_at_front(struct node* pnode,struct list* plist){
pnode->next = plist->head;
plist->head = pnode;
}
void add_node_at_back(struct node* pnode,struct list* plist){
struct node *current, *sentinel = get_sentinel(plist);
// search for last element
current = plist->head;
while (current->next != sentinel)
current = current->next;
// insert node
pnode->next = sentinel;
current->next = pnode;
}
void remove_node(struct list* plist, int value){
struct node **prevnext, *sentinel = get_sentinel(plist);
prevnext = &plist->head; // ptr to next pointer of previous node
while (*prevnext != sentinel) {
struct node *current = *prevnext;
if (current->value == value) {
*prevnext = current->next; // remove current from list
free(current); // and free it
break; // we're done!
}
prevnext = ¤t->next;
}
}
void print_list(struct list* plist){
struct node *current, *sentinel = get_sentinel(plist);
for (current = plist->head; current != sentinel; current = current->next)
print_node(current);
}
A few comments:
- I think the remove function doesn't correctly adjust the circular list pointers when you delete the head node and the list is larger than 3 elements. Since the list is circular you have to point the last node in the list to the new head.
- You might be able to shorten the remove function slightly by creating a "find_node" function. Since the list is circular, however, there will still be the edge case of deleting the head node which will be more complex than in a non-circular list.
- Code "beauty" is in the eye of the beholder. As code goes yours is easy to read and understand which beats a lot of code in the wild.
I use the following to create a dynamic circular singly linked list. All it requires is the size.
Node* createCircularLList(int size)
{
Node *it; // to iterate through the LList
Node *head;
// Create the head /1st Node of the list
head = it = (Node*)malloc(sizeof(Node));
head->id = 1;
// Create the remaining Nodes (from 2 to size)
int i;
for (i = 2; i <= size; ++i) {
it->next = (Node*)malloc(sizeof(Node)); // create next Node
it = it->next; // point to it
it->id = i; // assign its value / id
if (i == 2)
head->next = it; // head Node points to the 2nd Node
}
// close the llist by having the last Node point to the head Node
it->next = head;
return head; // return pointer to start of the list
}
And i define Node
ADT like so:
typedef struct Node {
int id;
struct Node *next;
} Node;
精彩评论