Need to template for worker thread method
I need to design perfect worker thread method. The method must do the following:
- 1) extract something from queue (let's say a queue of string) and do something
- 2) stop and return when 开发者_如何学JAVAclass is disposed
- 3) wait for some event (that queue is not empty) and do not consume cpu
- 4) run in separate thread
Main thread will add string to queue and signal thread method to continue and do the job.
I would like you to provide me the the template with required syncronization objects.
class MyClass, IDisposable
{
// Thread safe queue from third party
private ThreadSafeQueue<string> _workerQueue;
private Thread _workerThread;
public bool Initialize()
{
_workerThread = new Thread(WorkerThread).Start();
}
public AddTask(string object)
{
_workerQueue.Enqueue(object);
// now we must signal worker thread
}
// this is worker thread
private void WorkerThread()
{
// This is what worker thread must do
List<string> objectList = _workerQueue.EnqueAll
// Do something
}
// Yeap, this is Dispose
public bool Dispose()
{
}
}
Try something like this. instantiate with type string and give it a delegate to process your string:
public class SuperQueue<T> : IDisposable where T : class
{
readonly object _locker = new object();
readonly List<Thread> _workers;
readonly Queue<T> _taskQueue = new Queue<T>();
readonly Action<T> _dequeueAction;
/// <summary>
/// Initializes a new instance of the <see cref="SuperQueue{T}"/> class.
/// </summary>
/// <param name="workerCount">The worker count.</param>
/// <param name="dequeueAction">The dequeue action.</param>
public SuperQueue(int workerCount, Action<T> dequeueAction)
{
_dequeueAction = dequeueAction;
_workers = new List<Thread>(workerCount);
// Create and start a separate thread for each worker
for (int i = 0; i < workerCount; i++)
{
Thread t = new Thread(Consume) { IsBackground = true, Name = string.Format("SuperQueue worker {0}",i )};
_workers.Add(t);
t.Start();
}
}
/// <summary>
/// Enqueues the task.
/// </summary>
/// <param name="task">The task.</param>
public void EnqueueTask(T task)
{
lock (_locker)
{
_taskQueue.Enqueue(task);
Monitor.PulseAll(_locker);
}
}
/// <summary>
/// Consumes this instance.
/// </summary>
void Consume()
{
while (true)
{
T item;
lock (_locker)
{
while (_taskQueue.Count == 0) Monitor.Wait(_locker);
item = _taskQueue.Dequeue();
}
if (item == null) return;
// run actual method
_dequeueAction(item);
}
}
/// <summary>
/// Performs application-defined tasks associated with freeing, releasing, or resetting unmanaged resources.
/// </summary>
public void Dispose()
{
// Enqueue one null task per worker to make each exit.
_workers.ForEach(thread => EnqueueTask(null));
_workers.ForEach(thread => thread.Join());
}
}
What you are describing is best accomplished with the producer-consumer pattern. This pattern is most easily implemented with a blocking queue. If you are using .NET 4.0 then you can take advantage of the BlockingCollection class. Here is how I am seeing your code working. In the following example I am using a null
value as sentinel for gracefully ending the consumer, but you could also take advantage of the CancellationToken
parameter on the Take
method.
public class MyClass : IDisposable
{
private BlockingCollection<string> m_Queue = new BlockingCollection<string>();
public class MyClass()
{
var thread = new Thread(Process);
thread.IsBackground = true;
thread.Start();
}
public void Dispose()
{
m_Queue.Add(null);
}
public void AddTask(string item)
{
if (item == null)
{
throw new ArgumentNullException();
}
m_Queue.Add(item);
}
private void Process()
{
while (true)
{
string item = m_Queue.Take();
if (item == null)
{
break; // Gracefully end the consumer thread.
}
else
{
// Process the item here.
}
}
}
}
I think you should consider using BackgroundWorker
class, which may fit well to your needs.
Sounds like BlockingQueue is what you need.
You should take a look at the new .Net 4 System.Collections.Concurrent Namespace. Also this little example should help you to get a better understanding on how to use it.
精彩评论