why should a good hash algorithm not allow attackers to find two messages producing the same hash?
I was reading wikipedia, and it says
Cryptographic hash functions are a third type of cryptographic algorithm. They take a message of any length as input, and output a short, fixed length hash which can be used in (for example) a digital signature. For good hash functions, an attacker cannot find two messages that produce the same hash.
But why? What I understand is that you can put the long Macbeth story into the hash function and get a X long hash out of it. Then you can put in the Beowulf story to get another hash out of it again X long.
So since this function maps loads of things into a shorter length, there is bound to be overlaps, like I might put in the story of the Hobit into the hash function and get the same output as Beowulf, ok, but this is inevitable right (?) since we are producing a shorter length output from our input? And even if the output is found, why is it a problem?
I can imagine if I invert it and get out Hobit instead of Beowulf, that would be 开发者_JAVA百科bad but why is it useful to the attacker?
Best,
Yes, of course there will be collisions for the reasons you describe.
I suppose the statement should really be something like this: "For good hash functions, an attacker cannot find two messages that produce the same hash, except by brute-force".
As for the why...
Hash algorithms are often used for authentication. By checking the hash of a message you can be (almost) certain that the message itself hasn't been tampered with. This relies on it being infeasible to find two messages that generate the same hash.
If a hash algorithm allows collisions to be found relatively easily then it becomes useless for authentication because an attacker could then (theoretically) tamper with a message and have the tampered message generate the same hash as the original.
Yes, it's inevitable that there will be collisions when mapping a long message onto a shorter hash, as the hash cannot contain all possible values of the message. For the same reason you cannot 'invert' the hash to uniquely produce either Beowulf or The Hobbit - but if you generated every possible text and filtered out the ones that had your particular hash value, you'd find both texts (amongst billions of others).
The article is saying that it should be hard for an attacker to find or construct a second message that has the same hash value as a first. Cryptographic hash functions are often used as proof that a message hasn't been tampered with - if even a single bit of data flips then the hash value should be completely different.
A couple of years back, Dutch researchers demonstrated weaknesses in MD5 by publishing a hash of their "prediction" for the US presidential election. Of course, they had no way of knowing the outcome in advance - but with the computational power of a PS3 they constructed a PDF file for each candidate, each with the same hash value. The implications for MD5 - already on its way down - as a trusted algorithm for digital signatures became even more dire...
Cryptographic hashes are used for authentication. For instance, peer-to-peer protocols rely heavily on them. They use them to make sure that an ill-intentioned peer cannot spoil the download for everyone else by distributing packets that contain garbage. The torrent file that describes a download contains the hashes for each block. With this check in place, the victim peer can find out that he has been handled a corrupted block and download it again from someone else.
The attacker would like to replace Beowulf by Hobbit to increase saxon poetry's visibility, but the cryptographic hash that is used in the protocol won't let him.
If it is easy to find collisions then the attacker could create malicious data, and simply prepend it with dummy data until the collision is found. The hash check would then pass for the malicious data. That is why collisions should only be possible via brute force and be as rare as possible.
Alternatively collisions are also a problem with Certificates.
精彩评论