Damerau - Levenshtein Distance, adding a threshold
I have the following implementation, but I want to add a threshold, so if the result is going to be greater than it, just stop calculating and return.
How would I go about that?
EDIT: Here is my current code, threshold
is not yet used...the goal is that it is used
public static int DamerauLevenshteinDistance(string string1, string string2, int threshold)
{
// Return trivial case - where they are equal
if (string1.Equals(string2))
return 0;
// Return trivial case - where one is empty
if (String.IsNullOrEmpty(string1) || String.IsNullOrEmpty(string2))
return (string1 ?? "").Length + (string2 ?? "").Length;
// Ensure string2 (inner cycle) is longer
if (string1.Length > string2.Length)
{
var tmp = string1;
string1 = string2;
string2 = tmp;
}
// Return trivial case - where string1 is contained within string2
开发者_如何学C if (string2.Contains(string1))
return string2.Length - string1.Length;
var length1 = string1.Length;
var length2 = string2.Length;
var d = new int[length1 + 1, length2 + 1];
for (var i = 0; i <= d.GetUpperBound(0); i++)
d[i, 0] = i;
for (var i = 0; i <= d.GetUpperBound(1); i++)
d[0, i] = i;
for (var i = 1; i <= d.GetUpperBound(0); i++)
{
for (var j = 1; j <= d.GetUpperBound(1); j++)
{
var cost = string1[i - 1] == string2[j - 1] ? 0 : 1;
var del = d[i - 1, j] + 1;
var ins = d[i, j - 1] + 1;
var sub = d[i - 1, j - 1] + cost;
d[i, j] = Math.Min(del, Math.Min(ins, sub));
if (i > 1 && j > 1 && string1[i - 1] == string2[j - 2] && string1[i - 2] == string2[j - 1])
d[i, j] = Math.Min(d[i, j], d[i - 2, j - 2] + cost);
}
}
return d[d.GetUpperBound(0), d.GetUpperBound(1)];
}
}
This is Regarding ur answer this: Damerau - Levenshtein Distance, adding a threshold (sorry can't comment as I don't have 50 rep yet)
I think you have made an error here. You initialized:
var minDistance = threshold;
And ur update rule is:
if (d[i, j] < minDistance)
minDistance = d[i, j];
Also, ur early exit criteria is:
if (minDistance > threshold)
return int.MaxValue;
Now, observe that the if condition above will never hold true! You should rather initialize minDistance
to int.MaxValue
Here's the most elegant way I can think of. After setting each index of d, see if it exceeds your threshold. The evaluation is constant-time, so it's a drop in the bucket compared to the theoretical N^2 complexity of the overall algorithm:
public static int DamerauLevenshteinDistance(string string1, string string2, int threshold)
{
...
for (var i = 1; i <= d.GetUpperBound(0); i++)
{
for (var j = 1; j <= d.GetUpperBound(1); j++)
{
...
var temp = d[i,j] = Math.Min(del, Math.Min(ins, sub));
if (i > 1 && j > 1 && string1[i - 1] == string2[j - 2] && string1[i - 2] == string2[j - 1])
temp = d[i,j] = Math.Min(temp, d[i - 2, j - 2] + cost);
//Does this value exceed your threshold? if so, get out now
if(temp > threshold)
return temp;
}
}
return d[d.GetUpperBound(0), d.GetUpperBound(1)];
}
You also asked this as a SQL CLR UDF question so I'll answer in that specific context: you best optmiziation won't come from optimizing the Levenshtein distance, but from reducing the number of pairs you compare. Yes, a faster Levenshtein algorithm will improve things, but not nearly as much as reducing the number of comparisons from N square (with N in the millions of rows) to N*some factor. My proposal is to compare only elements who have the length difference within a tolerable delta. On your big table, you add a persisted computed column on LEN(Data)
and then create an index on it with include Data:
ALTER TABLE Table ADD LenData AS LEN(Data) PERSISTED;
CREATE INDEX ndxTableLenData on Table(LenData) INCLUDE (Data);
Now you can restrict the sheer problem space by joining within an max difference on lenght (eg. say 5), if your data's LEN(Data)
varies significantly:
SELECT a.Data, b.Data, dbo.Levenshtein(a.Data, b.Data)
FROM Table A
JOIN Table B ON B.DataLen BETWEEN A.DataLen - 5 AND A.DataLen+5
Finally got it...though it's not as beneficial as I had hoped
public static int DamerauLevenshteinDistance(string string1, string string2, int threshold)
{
// Return trivial case - where they are equal
if (string1.Equals(string2))
return 0;
// Return trivial case - where one is empty
if (String.IsNullOrEmpty(string1) || String.IsNullOrEmpty(string2))
return (string1 ?? "").Length + (string2 ?? "").Length;
// Ensure string2 (inner cycle) is longer
if (string1.Length > string2.Length)
{
var tmp = string1;
string1 = string2;
string2 = tmp;
}
// Return trivial case - where string1 is contained within string2
if (string2.Contains(string1))
return string2.Length - string1.Length;
var length1 = string1.Length;
var length2 = string2.Length;
var d = new int[length1 + 1, length2 + 1];
for (var i = 0; i <= d.GetUpperBound(0); i++)
d[i, 0] = i;
for (var i = 0; i <= d.GetUpperBound(1); i++)
d[0, i] = i;
for (var i = 1; i <= d.GetUpperBound(0); i++)
{
var im1 = i - 1;
var im2 = i - 2;
var minDistance = threshold;
for (var j = 1; j <= d.GetUpperBound(1); j++)
{
var jm1 = j - 1;
var jm2 = j - 2;
var cost = string1[im1] == string2[jm1] ? 0 : 1;
var del = d[im1, j] + 1;
var ins = d[i, jm1] + 1;
var sub = d[im1, jm1] + cost;
//Math.Min is slower than native code
//d[i, j] = Math.Min(del, Math.Min(ins, sub));
d[i, j] = del <= ins && del <= sub ? del : ins <= sub ? ins : sub;
if (i > 1 && j > 1 && string1[im1] == string2[jm2] && string1[im2] == string2[jm1])
d[i, j] = Math.Min(d[i, j], d[im2, jm2] + cost);
if (d[i, j] < minDistance)
minDistance = d[i, j];
}
if (minDistance > threshold)
return int.MaxValue;
}
return d[d.GetUpperBound(0), d.GetUpperBound(1)] > threshold
? int.MaxValue
: d[d.GetUpperBound(0), d.GetUpperBound(1)];
}
精彩评论