JUnit: How to simulate System.in testing?
开发者_如何转开发I have a Java command-line program. I would like to create JUnit test case to be able to simulate System.in
. Because when my program runs it will get into the while loop and waits for input from users. How do I simulate that in JUnit?
Thanks
It is technically possible to switch System.in
, but in general, it would be more robust not to call it directly in your code, but add a layer of indirection so the input source is controlled from one point in your application. Exactly how you do that is an implementation detail - the suggestions of dependency injection are fine, but you don't necessarily need to introduce 3rd party frameworks; you could pass round an I/O context from the calling code, for example.
How to switch System.in
:
String data = "Hello, World!\r\n";
InputStream stdin = System.in;
try {
System.setIn(new ByteArrayInputStream(data.getBytes()));
Scanner scanner = new Scanner(System.in);
System.out.println(scanner.nextLine());
} finally {
System.setIn(stdin);
}
Based on @McDowell's answer and another answer that shows how to test System.out, I would like to share my solution to give an input to a program and test its output.
As a reference, I use JUnit 4.12.
Let's say we have this program that simply replicates input to output:
import java.util.Scanner;
public class SimpleProgram {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print(scanner.next());
scanner.close();
}
}
To test it, we can use the following class:
import static org.junit.Assert.*;
import java.io.*;
import org.junit.*;
public class SimpleProgramTest {
private final InputStream systemIn = System.in;
private final PrintStream systemOut = System.out;
private ByteArrayInputStream testIn;
private ByteArrayOutputStream testOut;
@Before
public void setUpOutput() {
testOut = new ByteArrayOutputStream();
System.setOut(new PrintStream(testOut));
}
private void provideInput(String data) {
testIn = new ByteArrayInputStream(data.getBytes());
System.setIn(testIn);
}
private String getOutput() {
return testOut.toString();
}
@After
public void restoreSystemInputOutput() {
System.setIn(systemIn);
System.setOut(systemOut);
}
@Test
public void testCase1() {
final String testString = "Hello!";
provideInput(testString);
SimpleProgram.main(new String[0]);
assertEquals(testString, getOutput());
}
}
I won't explain much, because I believe the code is readable and I cited my sources.
When JUnit runs testCase1()
, it is going to call the helper methods in the order they appear:
setUpOutput()
, because of the@Before
annotationprovideInput(String data)
, called fromtestCase1()
getOutput()
, called fromtestCase1()
restoreSystemInputOutput()
, because of the@After
annotation
I didn't test System.err
because I didn't need it, but it should be easy to implement, similar to testing System.out
.
There are a few ways to approach this. The most complete way is to pass in an InputStream while running the class under test which is a fake InputStream which passes simulated data to your class. You can look at a dependency injection framework (such as Google Guice) if you need to do this a lot in your code, but the simple way is:
public class MyClass {
private InputStream systemIn;
public MyClass() {
this(System.in);
}
public MyClass(InputStream in) {
systemIn = in;
}
}
Under test you would call the constructor that takes the input stream. You cloud even make that constructor package private and put the test in the same package, so that other code would not generally consider using it.
Try to refactor your code to use dependency injection. Instead of having your a method that uses System.in
directly, have the method accept an InputStream
as an argument. Then in your junit test, you'll be able to pass a test InputStream
implementation in place of System.in
.
You can write a clear test for the command line interface by using the TextFromStandardInputStream
rule of the System Rules library.
public void MyTest {
@Rule
public final TextFromStandardInputStream systemInMock
= emptyStandardInputStream();
@Test
public void readTextFromStandardInputStream() {
systemInMock.provideLines("foo");
Scanner scanner = new Scanner(System.in);
assertEquals("foo", scanner.nextLine());
}
}
Full disclosure: I'm the author of that library.
You could create a custom InputStream
and attach it to the System
class
class FakeInputStream extends InputStream {
public int read() {
return -1;
}
}
And then use it with your Scanner
System.in = new FakeInputStream();
Before:
InputStream in = System.in;
...
Scanner scanner = new Scanner( in );
After:
InputStream in = new FakeInputStream();
...
Scanner scanner = new Scanner( in );
Although I think you should better to test how your class should work with the data read from the input stream and not really how it reads from there.
The problem with BufferedReader.readLine()
is that it is a blocking method which waits for user input. It seems to me that you don't particularly want to simulate that (i.e. you want tests to be fast). But in a testing context it continually returns null
at high speed during testing, which is irksome.
For a purist you can make the getInputLine
below package-private, and mock it: easy-peezy.
String getInputLine() throws Exception {
return br.readLine();
}
... you'd have to make sure that you had a way of stopping (typically) a loop of user interaction with the app. You'd also have to cope with the fact that your "input lines" would always be the same until you somehow changed the doReturn
of your mock: hardly typical of user input.
For a non-purist who wishes to make life easy for themselves (and produce readable tests) you could put all this stuff below in your app code:
private Deque<String> inputLinesDeque;
void setInputLines(List<String> inputLines) {
inputLinesDeque = new ArrayDeque<String>(inputLines);
}
private String getInputLine() throws Exception {
if (inputLinesDeque == null) {
// ... i.e. normal case, during app run: this is then a blocking method
return br.readLine();
}
String nextLine = null;
try {
nextLine = inputLinesDeque.pop();
} catch (NoSuchElementException e) {
// when the Deque runs dry the line returned is a "poison pill",
// signalling to the caller method that the input is finished
return "q";
}
return nextLine;
}
... in your test you might then go like this:
consoleHandler.setInputLines( Arrays.asList( new String[]{ "first input line", "second input line" }));
before triggering off the method in this "ConsoleHandler" class which needs input lines.
maybe like this (not tested):
InputStream save_in=System.in;final PipedOutputStream in = new PipedOutputStream(); System.setIn(new PipedInputStream(in));
in.write("text".getBytes("utf-8"));
System.setIn( save_in );
more parts:
//PrintStream save_out=System.out;final ByteArrayOutputStream out = new ByteArrayOutputStream();System.setOut(new PrintStream(out));
InputStream save_in=System.in;final PipedOutputStream in = new PipedOutputStream(); System.setIn(new PipedInputStream(in));
//start something that reads stdin probably in a new thread
// Thread thread=new Thread(new Runnable() {
// @Override
// public void run() {
// CoursesApiApp.main(new String[]{});
// }
// });
// thread.start();
//maybe wait or read the output
// for(int limit=0; limit<60 && not_ready ; limit++)
// {
// try {
// Thread.sleep(100);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// }
in.write("text".getBytes("utf-8"));
System.setIn( save_in );
//System.setOut(save_out);
@Stefan Birkner, Thanks!
- Modify Pom.xml
Ref:
https://stackoverflow.com/a/66127606/8317677
https://github.com/stefanbirkner/system-lambda/blob/master/pom.xml
https://github.com/stefanbirkner/system-lambda/blob/master/src/test/java/com/github/stefanbirkner/systemlambda/WithTextFromSystemInTest.java
<properties>
<system-lambda.version>1.2.1</system-lambda.version>
</properties>
<dependencies>
<dependency>
<groupId>com.github.stefanbirkner</groupId>
<artifactId>system-lambda</artifactId>
<version>${system-lambda.version}</version>
<scope>test</scope>
</dependency>
</dependencies>
- Add function code
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class SimpleProgram003 {
public static void main(String[] args) {
try{
String c;
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
do{
c = in.readLine();
System.out.println(c);
String d = c;
}while(!c.equals("q"));
}catch(Exception e){
System.out.println("catch Exception");
}
}
}
- Add test code
import static com.github.stefanbirkner.systemlambda.SystemLambda.*;
import static org.junit.Assert.*;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.InputStream;
import java.io.PrintStream;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
/**
* Unit test for simple App. JUnit 4.x.
*/
public class SimpleProgram003Test {
private final InputStream systemIn = System.in;
private final PrintStream systemOut = System.out;
private ByteArrayInputStream testIn;
private ByteArrayOutputStream testOut;
@Before
public void setUpOutput() {
testOut = new ByteArrayOutputStream();
System.setOut(new PrintStream(testOut));
}
private void setInput(String data) {
testIn = new ByteArrayInputStream(data.getBytes());
System.setIn(testIn);
}
private String getOutput() {
return testOut.toString();
}
@After
public void restoreSystemInputOutput() {
System.setIn(systemIn);
System.setOut(systemOut);
}
@Test
public void testCase1() {
final String testString = "Hello 1\nq\n";
setInput(testString);
SimpleProgram003.main(new String[0]);
// String a = getOutput();
assertEquals("Hello 1\r\nq\r\n", getOutput());
}
@Test // Multiply inputs
public void testCase2() throws Exception {
withTextFromSystemIn(
"Input1",
"Input2",
"q",
"Input3"
).execute(() -> {
SimpleProgram003.main(new String[0]);
// String a = getOutput();
assertEquals("Input1\r\nInput2\r\nq\r\n", getOutput());
});
}
}
精彩评论