开发者

What should I have in mind when building OLAP solution from scratch?

I'm working for a company running a software product based on a MS SQL database server, and through the years I have developed 20-30 quite advanced reports in PHP, taking data directly from the database. This has been very successful, and people are happy with it.

But it has some drawbacks:

  • For new changes, it can be quite development intensive
  • The user can't experiment much with the data - it is locked to a hard-coded view
  • It can be slow for big reports

I am considering gradually going to a OLAP-based approach, which can be queried from Excel or some web-based service. But I would like to do this in a way that introduces the least amount of new complexity in the IT environment - the least amount of different services, synchronization jobs etc!

I have some questions in this regard:

1) Workflow-related:

  • What is a good development route from "black box SQL server" to "OLAP ready to use"?
  • Which servers and services should be set up, and which scripts should be written?
  • Which are the hardest/most critical/most time-intensive parts?

2) ETL:

  • I suppose 开发者_StackOverflow中文版it is best to have separate servers for their Data Warehouse and Production SQL?
  • How are these kept in sync (push/pull)? Using which technologies/languages?
  • For me SSIS looks overly complicated, and the graphical workflow doesn't appeal much to me -- I would rather like a text based script that does the job. Is this feasible?
  • Or is it advantagous to use the graphical client with only one source and one destination?

3) Development:

  • How much of this (data integration, analysis services) can be efficiently maintained from a CLI-tool?
  • Can the setup be transferred back and forth between production and development easily?

I'm happy with any answer that covers just some of this - and even though it is a MS environment, I'm also interested to hear about advantages in other technologies.


I only have experience with Microsoft OLAP, so here are my two cents regarding what I know:

  1. If you are implementing cubes, then separate the production SQL Server from the source for the cubes. Cubes require a lot of SELECT DISTINCT column_name FROM source.table. You don't want cube processing to block your mission critical production system.

  2. Although you can implement OLAP cubes with standard relation tables, you will quickly find that unless your data is a ledger-style system you will probably need to fully reprocess your fact and dimension tables and this will require requerying the source database over and over again. That's a large argument for building a separate data warehouse that uses ledger-style transactions for the fact tables. For instance, if a customer orders something and then cancels it, your source system may track this as a status change. In your fact table, you probably need to show this as a row for ordering that has a positive quantity and revenue stream and a row for cancelling that has a negative quantity and revenue stream.

  3. OLAP may be overkill for your environment. The main issue you appeared to raise was that your reports are static and users want access to the data directly. You could build a data model and give users Report Builder access in SSRS, or report writing access in some other BI suite like Cognos, Business Objects, etc. I don't generally recommend this approach since it is way beyond what most users should have to know to get data, but in a small shop this may be sufficient and it is easy to implement. Let's face it -- users generally just want to get the data into Excel to manipulate it further. So if you don't want to give them a web front-end and you just want them to get to the data from Excel, you could give them direct database access to a copy of the production data. The downside of this approach is users don't generally understand SQL or database relationships. OLAP helps you avoid forcing users to learn SQL or relationships, but is isn't easy to implement on your end. If you only have a couple of power users who need this kind of access, it could be easy enough to teach the few power users how to do basic queries in Excel against the database and they will be happy to get this tomorrow. OLAP won't be ready by tomorrow.

  4. If you only have a few kinds of source data systems, you could get away with building a super-dynamic static report. For instance, I have a report that was written in C# that basically allows users to select as many columns as they want from a list of 30 columns and filter the data on a few date range fields and field filter lists. This simple report covers about 40% of all ad hoc report requests from end-users since it covers all the basic, core customer metrics and fields. We recently moved this report to SSRS and that allowed us to up the number of fields to about 100 and improved the overall user experience. Regardless of the reporting platform, it is possible to give users some dynamic flexibility even in the confines of a static reporting system.

  5. If you only have a couple of databases, you can probably backup and restore the databases as your ETL. However, if you want to do anything beyond that, then you might as well bite the bullet and use SSIS (or some other ETL tool). Once you get into ETL for data warehousing, you are going to use a graphic-oriented design tool. Coding works well for applications, but ETL is more about workflows and that's why the tools tend to converge on a graphical UI. You can work around this and try to code a data warehouse from a text editor, but in the end you are going to lose out on a lot. See this post for more details on the differences between loading data from code and loading data from SSIS.

FEEDBACK ON HOW TO USE CUBES WITH A RELATIONAL DATA STORE

It is possible to implement a cube over a relational data store, but there are some major problems with using this approach. The main reason it is technically feasible has to do with how you configure your DSV. The DSV is essentially a logical layer between the physical database and the cube/dimension definitions. Instead of importing the relational tables into the DSV, you could define Named Queries or create views in the database that flatten the data.

The advantage of this approach are as follows:

  1. It is relatively easy to implement since you don't have to build an entire ETL subsystem to get started with OLAP.

  2. This approach works well for prototyping how you want to build a more long-term solution. You can prototype it in 1-2 days and show some of the benefits of OLAP today.

  3. Some very, very large tables don't have to be completely duplicated just to support an OLAP cube. I have several multi-billion row tables that are almost completely standardized fact tables. The only columns they don't have are date keys and they also contain some NULL values on fields that shouldn't have nulls at all. Instead of duplicating these very massive tables, you can create the surrogate date keys and set values for the nulls in the view or named query. If you aren't going to see a huge performance boon for duplicating the table, then this may be a candidate for leaving in a more raw format in the database itself.

The disadvantages of this approach are as follows:

  1. If you haven't built a true Kimball method data warehouse, then you probably aren't tracking transactions in a ledger-style. Kimball method fact tables (at least as I understand them) always change values by adding and subtracting rows. If someone cancels part of an order, you can't update the value in the cube for the single transaction. Instead, you have to balance out the transaction with a negative value. If you have to update the transaction, then you will have to fully reprocess the partition of the cube to replace the value which can be a very expensive operation. Unless your source system is a ledger-style transaction system, you will probably have to build a ledger-style copy in your ETL subsystem.

  2. If you don't build a Kimball method data warehouse, then you are probably using unobscured and possibly non-integer primary keys in your database. This directly impacts query performance inside the cube. It also sets you up for having a theoretically inflexible data warehouse. For instance, if you have an product ordering system that uses an integer key and you start using a second product ordering system either as a replacement for the legacy system or in tandem with the legacy system, you may struggle to combine the data together merely through the DSV since each system has different data points, metrics, workflows, data types, etc. Worse, if they have the same data types for the order id and the order id values overlap between systems, then you must declare a surrogate key that you can use across both systems. This can be difficult, but not impossible, to implement without using a flattened data warehouse.

  3. You may have to build the system twice if you start with the relational data store and then move to flattened database. Frankly, I think the amount of duplicated work is trivial. Most of what you learned building the cube off a relational data store will translate to setting up the new OLAP cube. The main problem, though, is that you will probably create a new cube altogether and then any users of the old cube will have to migrate to the new cube. Any reports built in SSRS or Excel will probably break at that point and need to be rewritten from the ground up. So the main cost of rebuilding the cube is really on rebuilding dependent objects -- not on rebuilding the cube itself.

Let me know if you want me to expand on any of the above points. good luck.


You're basically asking the million dollar question of "How do I build a DWH". This is not really a question that can decisively be answered.

Nevertheless, here is a kickstart:

If you are looking for a minimum viable product, be aware that you are in a data environment, and not a pure software one. In data-heavy environments, it is much harder to incrementally build a product, because the amount of effort to introduce changes in the system is much greater. Think about it as if every change you make in a piece of software has to be somehow backwards-compatible with anything you've ever done. Now you understand the hell Microsoft are in :-).

Also, data systems involve many third-party tools such as DBs, ETL tools and reporting platforms. The choices you make should be viable for the expected development of your system, else you might have to completely replace these tools down the road.

While you can start with a DB cloning that will be based on simple copy SQLs and then aggregating it or pushing it into an OLAP, I would recommend getting your hands dirty with a real ETL tool from the start. This is especially true if you foresee the need to grow. 9 out of 10 times, the need will grow.

MS-SQL is a good choice for a DB if you don't mind the cost. The natural ETL tool would be SSIS, and it's a solid tool as well.

Even if your first transformations are merely "take this table and dump it in there", you still gain a lot in terms of process management (has the job run? What happens if it fails? etc) and debugging. Also, it is easier to organically grow as requirements and/or special cases have to be dealt with.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜