开发者

creating 10.000 connected hexagon page?

I am trying to create 10.000 hexagon connected each other like bee combs.I want to create all of this as a element that after I can import some thing to inside them.But for connecting hexagons together my algorithms stuck after connecting first 6 elements. Here is my algorithm in java. I made in java for testing . And inaddition I want to make them size smaller from before connected.

angle= 2*Math.PI/6;
        for (int i=0 ;i<6;i++){

        double v = i*angle-(15);

        pentagon pent = new pentagon(6, 60, a);
        a.x=a.x+(int)Math.round(105*Math.cos(v));
        a.y=a.y+(int)Math.round(105*Math.sin(v));

        pentagonList.add(pent);

and this is my pentagon class

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
 *
 * @author Meko
 */
public class pentagon extends JPanel {

    private int n, r;
    private double angle;
    public int[] x, y;


    Point c;
    int posX, posY;

    public pentagon(int pieces, int radie, Point center) {

        c = center;
        n = pieces;
        r = radie;
        x = new int[n];
        y = new int[n];
        angle = 2 * Math.PI / n;

        posX = c.x + 1024 / 2;
        posY = c.y + 1024 / 2;
    }

    public void drawMe(Graphics g) {

        g.drawStr开发者_如何学Going("CENTER", posX, posY);
        //System.out.print(" xO:  "+x0);
        for (int i = 0; i < n; i++) {
            double v = i * angle - (6 * 2 * Math.PI / 360) + 15;
            x[i] = posX + (int) Math.round(r * Math.cos(v));

            //   System.out.print(" x:  "+x[i]);
            y[i] = posY + (int) Math.round(r * Math.sin(v));
            g.drawString("" + i, x[i], y[i]);
        }
        g.drawPolygon(x, y, n);


    }

}


Creating a rectangular grid is fairly obvious - just skew a rectangular grid ( either skew it all and get a parallelogram, then use modulo to wrap it, or skew alternate rows/columns to create a rectangular grid ).

Creating a hexagon filled with hexagons is fairly easy too

  • in the n th rank, there are 6 bars of n hexes
  • the centres of adjacent hexes are displaced twice the distance of the midpoint of one of the faces to the centre

So if you have the x & y co-ordinates of your hexes in two arrays, polyX and polyY, you get a nested loop:

    drawHex ( g, cx, cy, 0 );

    for ( int rank = 1; rank < count; ++rank ) {

        for ( int bar = 0; bar < 6; ++bar ) {
            // x and y are twice midpoint of the previous face * the rank away 
            // from centre
            int x = cx + ( polyX [ ( bar + 4 ) % 6 ] + polyX [ ( bar + 5 ) % 6 ] ) * rank;
            int y = cy + ( polyY [ ( bar + 4 ) % 6 ] + polyY [ ( bar + 5 ) % 6 ] ) * rank;

            // move by twice the distance of the midpoint of the next face each time 
            int dx = polyX [ bar ] + polyX [ ( bar + 1 ) % 6 ];
            int dy = polyY [ bar ] + polyY [ ( bar + 1 ) % 6 ];

            for ( int hex = 0; hex < rank; ++hex ) {
                drawHex ( g, x, y, rank );
                x += dx;
                y += dy;
            }
        }
    }

Full example:

import javax.swing.*;
import java.awt.*;

public class Hexagons
{
    public static void main ( String...args ) throws Exception
    {
        SwingUtilities.invokeAndWait ( new Runnable () {
            @Override
            public void run () {
                new Hexagons().run();
            }
        } );
    }

    Hexagons ()
    {
        final JFrame frame = new JFrame();

        frame.setDefaultCloseOperation ( JFrame.EXIT_ON_CLOSE );

        final JPanel panel = new JPanel () {
            @Override
            public void paintComponent ( Graphics g ) {
                Graphics2D g2D = ( Graphics2D ) g;

                g2D.setRenderingHint ( RenderingHints.KEY_ANTIALIASING,
                RenderingHints.VALUE_ANTIALIAS_ON );

                drawHexes ( g2D, getWidth() / 2, getHeight() / 2 );
            }
        };

        count = 5;

        frame.add ( panel );
        frame.setSize ( 400, 400 );
        frame.setVisible ( true );

    }

    void run () { }

    int count;


    void drawHexes ( Graphics2D g, int cx, int cy )
    {
        int count = Math.min ( 20, Math.min ( cx, cy ) / 34 );

        drawHex ( g, cx, cy, 0 );

        for ( int rank = 1; rank < count; ++rank ) {

            for ( int bar = 0; bar < 6; ++bar ) {
                int x = ( polyX [ ( bar + 4 ) % 6 ] + polyX [ ( bar + 5 ) % 6 ] ) * rank;
                int y = ( polyY [ ( bar + 4 ) % 6 ] + polyY [ ( bar + 5 ) % 6 ] ) * rank;

                int dx = polyX [ bar ] + polyX [ ( bar + 1 ) % 6 ];
                int dy = polyY [ bar ] + polyY [ ( bar + 1 ) % 6 ];

                for ( int hex = 0; hex < rank; ++hex ) {
                    drawHex ( g, cx + x, cy + y, rank );
                    x += dx;
                    y += dy;
                }
            }
        }
    }

    static int polyX[] = { 20, 10, -10, -20, -10,  10 };
    static int polyY[] = {  0, 17,  17,   0, -17, -17 }; 
    static Color fill[] = new Color[20];
    static Color line[] = new Color[20];
    static BasicStroke stroke = new BasicStroke ( 1.5f );

    // make it pretty
    static {
        for ( int rank = 0; rank < 20; ++rank ) {
            double theta0 = rank * 2 * Math.PI / 20;
            double theta1 = theta0 + Math.PI * 2.0/3.0;
            double theta2 = theta1 + Math.PI * 2.0/3.0;

            fill [ rank ] = new Color ( 
                ( int ) ( 128 + 64 * Math.sin ( theta0 ) ),
                ( int ) ( 128 + 64 * Math.sin ( theta1 ) ),
                ( int ) ( 128 + 64 * Math.sin ( theta2 ) ) );
            line [ rank ] = new Color ( 
                ( int ) ( 64+ 32 * Math.sin ( theta0 ) ),
                ( int ) ( 64 + 32 * Math.sin ( theta1 ) ),
                ( int ) ( 64+ 32 * Math.sin ( theta2 ) ) );
        }
    }

    void drawHex ( Graphics2D g, int cx, int cy, int rank ) {
        g.translate ( cx, cy );
        g.setPaint ( fill [ rank ] );
        g.fillPolygon ( polyX, polyY, 6 );
        g.setColor ( line [ rank ] );
        g.setStroke ( stroke );
        g.drawPolygon ( polyX, polyY, 6 );
        g.translate ( -cx, -cy );
    }
}


You may get an inspiration from Sergey Malenkov's Hexagonal Tile Map applet.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜