Merging multiple files into one within Hadoop
I get multiple small files into my input dir开发者_运维问答ectory which I want to merge into a single file without using the local file system or writing mapreds. Is there a way I could do it using hadoof fs commands or Pig?
Thanks!
In order to keep everything on the grid use hadoop streaming with a single reducer and cat as the mapper and reducer (basically a noop) - add compression using MR flags.
hadoop jar \
$HADOOP_PREFIX/share/hadoop/tools/lib/hadoop-streaming.jar \<br>
-Dmapred.reduce.tasks=1 \
-Dmapred.job.queue.name=$QUEUE \
-input "$INPUT" \
-output "$OUTPUT" \
-mapper cat \
-reducer cat
If you want compression add
-Dmapred.output.compress=true \
-Dmapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec
hadoop fs -getmerge <dir_of_input_files> <mergedsinglefile>
okay...I figured out a way using hadoop fs
commands -
hadoop fs -cat [dir]/* | hadoop fs -put - [destination file]
It worked when I tested it...any pitfalls one can think of?
Thanks!
If you set up fuse to mount your HDFS to a local directory, then your output can be the mounted filesystem.
For example, I have our HDFS mounted to /mnt/hdfs
locally. I run the following command and it works great:
hadoop fs -getmerge /reports/some_output /mnt/hdfs/reports/some_output.txt
Of course, there are other reasons to use fuse to mount HDFS to a local directory, but this was a nice side effect for us.
You can use the tool HDFSConcat, new in HDFS 0.21, to perform this operation without incurring the cost of a copy.
If you are working in Hortonworks cluster and want to merge multiple file present in HDFS location into a single file then you can run 'hadoop-streaming-2.7.1.2.3.2.0-2950.jar' jar which runs single reducer and get the merged file into HDFS output location.
$ hadoop jar /usr/hdp/2.3.2.0-2950/hadoop-mapreduce/hadoop-streaming-2.7.1.2.3.2.0-2950.jar \
-Dmapred.reduce.tasks=1 \
-input "/hdfs/input/dir" \
-output "/hdfs/output/dir" \
-mapper cat \
-reducer cat
You can download this jar from Get hadoop streaming jar
If you are writing spark jobs and want to get a merged file to avoid multiple RDD creations and performance bottlenecks use this piece of code before transforming your RDD
sc.textFile("hdfs://...../part*).coalesce(1).saveAsTextFile("hdfs://...../filename)
This will merge all part files into one and save it again into hdfs location
Addressing this from Apache Pig perspective,
To merge two files with identical schema via Pig, UNION command can be used
A = load 'tmp/file1' Using PigStorage('\t') as ....(schema1)
B = load 'tmp/file2' Using PigStorage('\t') as ....(schema1)
C = UNION A,B
store C into 'tmp/fileoutput' Using PigStorage('\t')
All the solutions are equivalent to doing a
hadoop fs -cat [dir]/* > tmp_local_file
hadoop fs -copyFromLocal tmp_local_file
it only means that the local m/c I/O is on the critical path of data transfer.
精彩评论