std::tr1::function and std::tr1::bind
I have a problem using a very complicated C function in a C++ class (rewriting the C function is not an option). C function:
typedef void (*integrand) (unsigned ndim, const double* x, void* fdata,
unsigned fdim, double* fval);
// This one:
int adapt_integrate(unsigned fdim, integrand f, void* fdata,
unsigned dim, const double* xmin, const double* xmax,
unsigned maxEval, double reqAbsError, double reqRelError,
double* val, double* err);
I need to supply a void function of type integrand
myself, and adapt_integrate will calculate the n-dimensional integral. The code in calcTripleIntegral
(below) works as a standalone function if func
is a standalone function).
I want to pass a (non-static!) class member function as the integrand, as this can be easily overloaded etc...
class myIntegrator
{
public:
double calcTripleIntegral( double x, double Q2, std::tr1::function<integrand> &func ) const
{
//...declare val, err, xMin, xMax and input(x,Q2) ...//
adapt_integrate( 1, func, input,
3, xMin, xMax,
0, 0, 1e-4,
&val, &err);
return val;
}
double integrandF2( unsigned ndim, const double *x, void *, // no matter what's inside
unsigned fdim, double *fval) const; // this qualifies as an integrand if it were not a class member
double getValue( double x, double Q2 ) const
{
std::tr1::function<integrand> func(std::tr1::bind(&myIntegrator::integrandF2, *this);
return calcTripleIntegral(x,Q2,func);
}
}
On GCC 4.4.5 (prerelease), this gives me:
error: variable 'std::tr1::function func' has initializer but incomplete type
EDIT:What is the error in my code? I have now tried compiling with GCC 4.4, 4.5 and 4.6, all resulting in the same error. Either no work has been done on this, or I did something wrong /EDIT
Thanks very much! If I'm not clear enough, I'll gladly elaborate.
PS: Could I work around this without tr1 stuff by using a function pointer to a function defined somewhere in myIntegrator.cpp?
FINAL UPDATE: ok, I was mistaken in thinking TR1 provided a one/two-line solution for this. Bummer. I'm "converting" my classes to namespaces and copypasting the function declarations. I only need one base class a开发者_如何学JAVAnd one subclass which reimplemented the interface. C function pointer + C++ class = bad news for me. Thanks anyways for all the answers, you've shown me some dark corners of C++ ;)
If you are just trying to pass a member function into a c-style callback, you can do that with out using std::t1::bind
or std::tr1::function
.
class myIntegrator
{
public:
// getValue is no longer const. but integrandF2 wasn't changed
double getValue( double x, double Q2 )
{
m_x = x;
m_Q2 = Q2;
// these could be members if they need to change
const double xMin[3] = {0.0};
const double xMax[3] = {1.0,1.0,1.0};
const unsigned maxEval = 0;
double reqAbsError = 0.0;
double reqRelError = 1e-4;
double val;
adapt_integrate( 1, &myIntegrator::fancy_integrand,
reinterpret_cast<void*>(this),
3, xMin, xMax,
maxEval, reqAbsError, reqRelError,
&val, &m_err);
return val;
}
double get_error()
{ return m_error; }
private:
// use m_x and m_Q2 internally
// I removed the unused void* parameter
double integrandF2( unsigned ndim, const double *x,
unsigned fdim, double *fval) const;
static double fancy_integrand( unsigned ndim, const double* x, void* this_ptr,
unsigned fdim, double* fval)
{
myIntegrator& self = reinterpret_cast<myIntegrator*>(this_ptr);
self.integrateF2(ndim,x,fdim,fval);
}
double m_x
double m_Q2;
double m_err;
};
You have three problems... first you want a std::tr1::function<R (Args..)>
, but yours boils down to std::tr1::function<R (*)(Args...)>
- so you need two typedefs:
typedef void (integrand) (unsigned ndim, const double *x, void *,
unsigned fdim, double *fval);
typedef integrand* integrand_ptr;
... so the first allows you a compilable function<integrand>
. adapt_integrate
has to be fixed accordingly:
int adapt_integrate(unsigned fdim, integrand_ptr f, ...);
Next your bind
syntax is off, it should be:
std::tr1::bind(&myIntegrator::integrandF2, *this, _1, _2, _3, _4, _5);
The remaining problem is that tr1::function<T>
isn't convertible to a function pointer, so you would have to go through a wrapper function, using the void* fdata
argument to pass the context. E.g. something like:
extern "C" void integrand_helper (unsigned ndim, const double *x, void* data,
unsigned fdim, double *fval)
{
typedef std::tr1::function<integrand> Functor;
Functor& f = *static_cast<Functor*>(data);
f(ndim, x, data, fdim, fval);
}
// ...
adapt_integrate(1, &integrand_helper, &func, ...);
This is of course assuming that the void*
parameter is passed through to the function, if not it would get ugly.
On the other hand, if void* fdata
allows to pass context, all that tr1::function
stuff is unnecessary and you could just go directly through a trampoline function - just pass this
through as the context argument:
extern "C" void integrand_helper (unsigned ndim, const double *x, void* data,
unsigned fdim, double *fval)
{
static_cast<myIntegrator*>(data)->integrandF2(ndim, ...);
}
// ...
adapt_integrate(1, &integrand_helper, this, ...);
Since std::tr1::bind
and c-style function pointers don't get along, try this instead. It will work, except that myIntegrator::getValue
is not longer thread-safe. If calcTripleIntegral
were removed from the interface, this would be even simpler and wouldn't need to use std::tr1::bind
or std::tr1::function
.
class myIntegrator
{
public:
double getValue( double x, double Q2 ) const
{
return calcTripleIntegral(x,Q2,std::tr1::bind(&Integrator::integrandF2,this));
}
double calcTripleIntegral( double x, double Q2, const std::tr1::function<integrand>& func ) const
{
assert( s_integrator == NULL );
s_integrator = this;
m_integrand = func;
//...declare val, err, xMin, xMax and input(x,Q2) ...//
adapt_integrate( 1, &myIntegrator::fancy_integrand, input,
3, xMin, xMax,
0, 0, 1e-4,
&val, &err);
assert( s_integrator == this);
s_integrator = NULL;
return val;
}
private:
double integrandF2( unsigned ndim, const double *x, void *,
unsigned fdim, double *fval) const;
static double fancy_integrand( unsigned ndim, const double* x, void* input,
unsigned fdim, double* fval)
{
s_integrator->integrateF2(ndim,x,input,fdim,fval);
}
std::tr1::function<integrand> m_integrand;
static const myIntegrator* s_integrator;
};
I want to pass a (non-static!) class member function as the integrand...
You can't. If you search SO for using member functions as callbacks you'll be bound to find useful information including the fact that what you're trying to do, the direct approach anyway, is not possible.
Edit: BTW, one of the problems in your code (there's more of course since what you're trying to do is simply not possible) is that you've passed a function pointer type to function<> when what it expects is a signature. The function template is implemented something like so:
template < typename Signature >
struct function;
// for each possible number of arguments:
template < typename R, typename Arg1, typename Arg2 >
struct function<R(Arg1,Arg2)>
{
... body ...
};
As you can see, passing a function pointer to this kind of thing is simply not going to be understood by the compiler. It's going to try to instantiate the forward declaration and get nowhere. This is of course what the compiler error you're getting means but it doesn't address your fundamental problem, which is that what you're doing will never work.
In a fully C++0x compiler this can be done differently but boost::function and the MSVC one has to be like this. Furthermore, the C++0x version is going to have the same problem that you currently are facing.
Making the assumption that the C-API allows passing a type-agnostic (in the sense that the C-API function doesn't have to know its type but relies on the callback function to know what it requires) context parameter (this is usually the case with callback functions; in this case I suspect the fdata parameter to be something along these lines), pass the function object as part of this context parameter.
It should then look something like this:
#include <iostream>
#include <tr1/functional>
typedef void (*callback_function_t)(void *input, int arg);
struct data_type {
int x;
};
struct context_type {
std::tr1::function<void(data_type const &, int)> func;
data_type data;
};
void callback(data_type const&data, int x) {
std::cout << data.x << ", " << x << std::endl;
}
void callback_relay(void *context, int x) {
context_type const *ctxt = reinterpret_cast<context_type const*>(context);
ctxt->func(ctxt->data, x);
}
void call_callback(callback_function_t func, void *context, int x) {
func(context, x);
}
int main() {
context_type ctxt = { callback, { 1 } };
call_callback(callback_relay, &ctxt, 2);
}
Where call_callback is the C-API function. This way, you can assign anything you want that supports function call syntax to context_type::func, including std::tr1::bind expressions. Also, even though (I feel morally obligated to mention this) it is not, strictly speaking, defined in the standard that calling conventions for C and C++ functions are the same, in practice you could make context_type a class template and callback_relay a function template to make context_type::data more flexible and pass anything you like this way.
That error message makes it sound like you're missing an include for one of the types involved. At least try double-checking your integrand
and tr1
includes?
bind
works a bit different than you assume I think. You either need to provide a value, or a placeholder for every argument.
For your example this boils down to (with placeholders)
std::tr1::function<integrand> func(std::tr1::bind(&myIntegrator::integrandF2, *this, _1, _2, _3, _4, _5));
Since you're binding a member function, you got an extra (implicit) argument, i.e. the object you call the member function on, so you have six.
For the first you bind the this
object, for the other arguments you simply pass placeholders.
On a side note, your member function returns double, while the function declaration returns void.
(for the record, I'm still using an older compiler with little tr1 support, so I only have bind
and function
experience from using boost, maybe things changed a little for tr1...)
精彩评论