开发者

Get the list of index in subsequence matching

i have 2 sequences, for instance s=aaba and ss=aa, and i want all the way ss is in s. In this example: [0,1], [0,3] and [1,3] My code is below. It works fine, except for very long s with multiple ss. In that case i've got

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded (I already use java with -Xmx at the maximum I can…)

public static ArrayList<ArrayList<Integer>> getListIndex(String[] s, String[] ss, int is, int iss) {
    ArrayList<ArrayList<Integer>> listOfListIndex = new ArrayList<ArrayList<Integer>>();
    ArrayList<ArrayList<Integer>> listRec = new ArrayList<ArrayList<Integer>>();
          开发者_如何学JAVA  ArrayList<Integer> listI = new ArrayList<Integer>();

    if (iss<0||is<iss){
        return listOfListIndex;
    }

    if (ss[iss].compareTo(s[is])==0){

        //ss[iss] matches, search ss[0..iss-1] in s[0..is-1]
        listRec = getListIndex(s,ss,is-1,iss-1);

        //empty lists (iss=0 for instance)
        if(listRec.size()==0){
            listI = new  ArrayList<Integer>();
            listI.add(is);
            listOfListIndex.add(listI);
        }
        else{
            //adding to what we have already found
            for (int i=0; i<listRec.size();i++){
                listI = listRec.get(i);
                    listI.add(is);
                    listOfListIndex.add(listI);
            }
        }
    }
    //In all cases
    //searching ss[0..iss] in s[0..is-1]
    listRec = getListIndex(s,ss,is-1,iss);
    for (int i=0; i<listRec.size();i++){
        listI = listRec.get(i);
            listOfListIndex.add(listI);
    }

    return listOfListIndex;
}   

Is there anyway to do this more efficiently ?


I doubt the recursion is the problem (think of what the maximum recursion depth is). The algorithm can be efficiently implemented by collecting the indecies of each character of s in ss in TreeSets and then simply taking the .tailSet when needing to "advance" in the string.

import java.util.*;


public class Test {

    public static Set<List<Integer>> solutions(List<TreeSet<Integer>> is, int n) {

        TreeSet<Integer> ts = is.get(0);
        Set<List<Integer>> sol = new HashSet<List<Integer>>();
        for (int i : ts.tailSet(n+1)) {
            if (is.size() == 1) {
                List<Integer> l = new ArrayList<Integer>();
                l.add(i);
                sol.add(l);
            } else 
                for (List<Integer> tail : solutions(is.subList(1, is.size()), i)) {
                    List<Integer> l = new ArrayList<Integer>();
                    l.add(i);
                    l.addAll(tail);
                    sol.add(l);
                }
        }
        return sol;
    }


    public static void main(String[] args) {
        String ss = "aaba";
        String s = "aa";

        List<TreeSet<Integer>> is = new ArrayList<TreeSet<Integer>>();

        // Compute all indecies of each character.
        for (int i = 0; i < s.length(); i++) {
            TreeSet<Integer> indecies = new TreeSet<Integer>();
            char c = s.charAt(i);
            for (int j = 0; j < ss.length(); j++) {
                if (ss.charAt(j) == c)
                    indecies.add(j);
            }
            is.add(indecies);
        }

        System.out.println(solutions(is, -1));
    }
}

Output:

[[0, 1], [1, 3], [0, 3]]


ArrayList<Integer> is quite memory-inefficient due to the overhead of the wrapper class. Using TIntArrayList from GNU Trove will probably cut down your memory usage by a factor of 3 (or even more if you're running on a 64bit JVM).


Well, the basic problem is that your algorithm is recursive. Java doesn't do tail-call optimization, so every recursive call just adds to the stack until you overflow.

What you want to do is re-structure your algorithm to be iterable so you aren't adding to the stack. Think about putting a loop (with a termination test) as the outer-most element of your method instead.

Another way to look at this problem is to break it into two steps:

  1. Capture the positions of all of the given character ('a' in your example) into a single set.
  2. All you want here is the complete set of combinations between them. Remember that the equation for number of combinations of r things chosen from n different things is:

     C(n,r) = n!/[r!(n-r)!]
    
0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜