Algorithm to convert RGB to HSV and HSV to RGB in range 0-255 for both
I am looking for color space con开发者_C百科verter from RGB to HSV, specifically for the range 0 to 255 for both color spaces.
I've used these for a long time - no idea where they came from at this point... Note that the inputs and outputs, except for the angle in degrees, are in the range of 0 to 1.0.
NOTE: this code does no real sanity checking on inputs. Proceed with caution!
typedef struct {
double r; // a fraction between 0 and 1
double g; // a fraction between 0 and 1
double b; // a fraction between 0 and 1
} rgb;
typedef struct {
double h; // angle in degrees
double s; // a fraction between 0 and 1
double v; // a fraction between 0 and 1
} hsv;
static hsv rgb2hsv(rgb in);
static rgb hsv2rgb(hsv in);
hsv rgb2hsv(rgb in)
{
hsv out;
double min, max, delta;
min = in.r < in.g ? in.r : in.g;
min = min < in.b ? min : in.b;
max = in.r > in.g ? in.r : in.g;
max = max > in.b ? max : in.b;
out.v = max; // v
delta = max - min;
if (delta < 0.00001)
{
out.s = 0;
out.h = 0; // undefined, maybe nan?
return out;
}
if( max > 0.0 ) { // NOTE: if Max is == 0, this divide would cause a crash
out.s = (delta / max); // s
} else {
// if max is 0, then r = g = b = 0
// s = 0, h is undefined
out.s = 0.0;
out.h = NAN; // its now undefined
return out;
}
if( in.r >= max ) // > is bogus, just keeps compilor happy
out.h = ( in.g - in.b ) / delta; // between yellow & magenta
else
if( in.g >= max )
out.h = 2.0 + ( in.b - in.r ) / delta; // between cyan & yellow
else
out.h = 4.0 + ( in.r - in.g ) / delta; // between magenta & cyan
out.h *= 60.0; // degrees
if( out.h < 0.0 )
out.h += 360.0;
return out;
}
rgb hsv2rgb(hsv in)
{
double hh, p, q, t, ff;
long i;
rgb out;
if(in.s <= 0.0) { // < is bogus, just shuts up warnings
out.r = in.v;
out.g = in.v;
out.b = in.v;
return out;
}
hh = in.h;
if(hh >= 360.0) hh = 0.0;
hh /= 60.0;
i = (long)hh;
ff = hh - i;
p = in.v * (1.0 - in.s);
q = in.v * (1.0 - (in.s * ff));
t = in.v * (1.0 - (in.s * (1.0 - ff)));
switch(i) {
case 0:
out.r = in.v;
out.g = t;
out.b = p;
break;
case 1:
out.r = q;
out.g = in.v;
out.b = p;
break;
case 2:
out.r = p;
out.g = in.v;
out.b = t;
break;
case 3:
out.r = p;
out.g = q;
out.b = in.v;
break;
case 4:
out.r = t;
out.g = p;
out.b = in.v;
break;
case 5:
default:
out.r = in.v;
out.g = p;
out.b = q;
break;
}
return out;
}
You can also try this code without floats (faster but less accurate):
typedef struct RgbColor
{
unsigned char r;
unsigned char g;
unsigned char b;
} RgbColor;
typedef struct HsvColor
{
unsigned char h;
unsigned char s;
unsigned char v;
} HsvColor;
RgbColor HsvToRgb(HsvColor hsv)
{
RgbColor rgb;
unsigned char region, remainder, p, q, t;
if (hsv.s == 0)
{
rgb.r = hsv.v;
rgb.g = hsv.v;
rgb.b = hsv.v;
return rgb;
}
region = hsv.h / 43;
remainder = (hsv.h - (region * 43)) * 6;
p = (hsv.v * (255 - hsv.s)) >> 8;
q = (hsv.v * (255 - ((hsv.s * remainder) >> 8))) >> 8;
t = (hsv.v * (255 - ((hsv.s * (255 - remainder)) >> 8))) >> 8;
switch (region)
{
case 0:
rgb.r = hsv.v; rgb.g = t; rgb.b = p;
break;
case 1:
rgb.r = q; rgb.g = hsv.v; rgb.b = p;
break;
case 2:
rgb.r = p; rgb.g = hsv.v; rgb.b = t;
break;
case 3:
rgb.r = p; rgb.g = q; rgb.b = hsv.v;
break;
case 4:
rgb.r = t; rgb.g = p; rgb.b = hsv.v;
break;
default:
rgb.r = hsv.v; rgb.g = p; rgb.b = q;
break;
}
return rgb;
}
HsvColor RgbToHsv(RgbColor rgb)
{
HsvColor hsv;
unsigned char rgbMin, rgbMax;
rgbMin = rgb.r < rgb.g ? (rgb.r < rgb.b ? rgb.r : rgb.b) : (rgb.g < rgb.b ? rgb.g : rgb.b);
rgbMax = rgb.r > rgb.g ? (rgb.r > rgb.b ? rgb.r : rgb.b) : (rgb.g > rgb.b ? rgb.g : rgb.b);
hsv.v = rgbMax;
if (hsv.v == 0)
{
hsv.h = 0;
hsv.s = 0;
return hsv;
}
hsv.s = 255 * long(rgbMax - rgbMin) / hsv.v;
if (hsv.s == 0)
{
hsv.h = 0;
return hsv;
}
if (rgbMax == rgb.r)
hsv.h = 0 + 43 * (rgb.g - rgb.b) / (rgbMax - rgbMin);
else if (rgbMax == rgb.g)
hsv.h = 85 + 43 * (rgb.b - rgb.r) / (rgbMax - rgbMin);
else
hsv.h = 171 + 43 * (rgb.r - rgb.g) / (rgbMax - rgbMin);
return hsv;
}
Note that this algorithm uses 0-255
as its range (not 0-360
) as that was requested by the author of this question.
I wrote this in HLSL for our rendering engine, it has no conditions in it:
float3 HSV2RGB( float3 _HSV )
{
_HSV.x = fmod( 100.0 + _HSV.x, 1.0 ); // Ensure [0,1[
float HueSlice = 6.0 * _HSV.x; // In [0,6[
float HueSliceInteger = floor( HueSlice );
float HueSliceInterpolant = HueSlice - HueSliceInteger; // In [0,1[ for each hue slice
float3 TempRGB = float3( _HSV.z * (1.0 - _HSV.y),
_HSV.z * (1.0 - _HSV.y * HueSliceInterpolant),
_HSV.z * (1.0 - _HSV.y * (1.0 - HueSliceInterpolant)) );
// The idea here to avoid conditions is to notice that the conversion code can be rewritten:
// if ( var_i == 0 ) { R = V ; G = TempRGB.z ; B = TempRGB.x }
// else if ( var_i == 2 ) { R = TempRGB.x ; G = V ; B = TempRGB.z }
// else if ( var_i == 4 ) { R = TempRGB.z ; G = TempRGB.x ; B = V }
//
// else if ( var_i == 1 ) { R = TempRGB.y ; G = V ; B = TempRGB.x }
// else if ( var_i == 3 ) { R = TempRGB.x ; G = TempRGB.y ; B = V }
// else if ( var_i == 5 ) { R = V ; G = TempRGB.x ; B = TempRGB.y }
//
// This shows several things:
// . A separation between even and odd slices
// . If slices (0,2,4) and (1,3,5) can be rewritten as basically being slices (0,1,2) then
// the operation simply amounts to performing a "rotate right" on the RGB components
// . The base value to rotate is either (V, B, R) for even slices or (G, V, R) for odd slices
//
float IsOddSlice = fmod( HueSliceInteger, 2.0 ); // 0 if even (slices 0, 2, 4), 1 if odd (slices 1, 3, 5)
float ThreeSliceSelector = 0.5 * (HueSliceInteger - IsOddSlice); // (0, 1, 2) corresponding to slices (0, 2, 4) and (1, 3, 5)
float3 ScrollingRGBForEvenSlices = float3( _HSV.z, TempRGB.zx ); // (V, Temp Blue, Temp Red) for even slices (0, 2, 4)
float3 ScrollingRGBForOddSlices = float3( TempRGB.y, _HSV.z, TempRGB.x ); // (Temp Green, V, Temp Red) for odd slices (1, 3, 5)
float3 ScrollingRGB = lerp( ScrollingRGBForEvenSlices, ScrollingRGBForOddSlices, IsOddSlice );
float IsNotFirstSlice = saturate( ThreeSliceSelector ); // 1 if NOT the first slice (true for slices 1 and 2)
float IsNotSecondSlice = saturate( ThreeSliceSelector-1.0 ); // 1 if NOT the first or second slice (true only for slice 2)
return lerp( ScrollingRGB.xyz, lerp( ScrollingRGB.zxy, ScrollingRGB.yzx, IsNotSecondSlice ), IsNotFirstSlice ); // Make the RGB rotate right depending on final slice index
}
Here's a C implementation based on Agoston's Computer Graphics and Geometric Modeling: Implementation and Algorithms p. 304, with H ∈ [0, 360] and S,V ∈ [0, 1].
#include <math.h>
typedef struct {
double r; // ∈ [0, 1]
double g; // ∈ [0, 1]
double b; // ∈ [0, 1]
} rgb;
typedef struct {
double h; // ∈ [0, 360]
double s; // ∈ [0, 1]
double v; // ∈ [0, 1]
} hsv;
rgb hsv2rgb(hsv HSV)
{
rgb RGB;
double H = HSV.h, S = HSV.s, V = HSV.v,
P, Q, T,
fract;
(H == 360.)?(H = 0.):(H /= 60.);
fract = H - floor(H);
P = V*(1. - S);
Q = V*(1. - S*fract);
T = V*(1. - S*(1. - fract));
if (0. <= H && H < 1.)
RGB = (rgb){.r = V, .g = T, .b = P};
else if (1. <= H && H < 2.)
RGB = (rgb){.r = Q, .g = V, .b = P};
else if (2. <= H && H < 3.)
RGB = (rgb){.r = P, .g = V, .b = T};
else if (3. <= H && H < 4.)
RGB = (rgb){.r = P, .g = Q, .b = V};
else if (4. <= H && H < 5.)
RGB = (rgb){.r = T, .g = P, .b = V};
else if (5. <= H && H < 6.)
RGB = (rgb){.r = V, .g = P, .b = Q};
else
RGB = (rgb){.r = 0., .g = 0., .b = 0.};
return RGB;
}
@fins's answer has an overflow issue on Arduio as you turn the saturation down. Here it is with some values converted to int to prevent that.
typedef struct RgbColor
{
unsigned char r;
unsigned char g;
unsigned char b;
} RgbColor;
typedef struct HsvColor
{
unsigned char h;
unsigned char s;
unsigned char v;
} HsvColor;
RgbColor HsvToRgb(HsvColor hsv)
{
RgbColor rgb;
unsigned char region, p, q, t;
unsigned int h, s, v, remainder;
if (hsv.s == 0)
{
rgb.r = hsv.v;
rgb.g = hsv.v;
rgb.b = hsv.v;
return rgb;
}
// converting to 16 bit to prevent overflow
h = hsv.h;
s = hsv.s;
v = hsv.v;
region = h / 43;
remainder = (h - (region * 43)) * 6;
p = (v * (255 - s)) >> 8;
q = (v * (255 - ((s * remainder) >> 8))) >> 8;
t = (v * (255 - ((s * (255 - remainder)) >> 8))) >> 8;
switch (region)
{
case 0:
rgb.r = v;
rgb.g = t;
rgb.b = p;
break;
case 1:
rgb.r = q;
rgb.g = v;
rgb.b = p;
break;
case 2:
rgb.r = p;
rgb.g = v;
rgb.b = t;
break;
case 3:
rgb.r = p;
rgb.g = q;
rgb.b = v;
break;
case 4:
rgb.r = t;
rgb.g = p;
rgb.b = v;
break;
default:
rgb.r = v;
rgb.g = p;
rgb.b = q;
break;
}
return rgb;
}
HsvColor RgbToHsv(RgbColor rgb)
{
HsvColor hsv;
unsigned char rgbMin, rgbMax;
rgbMin = rgb.r < rgb.g ? (rgb.r < rgb.b ? rgb.r : rgb.b) : (rgb.g < rgb.b ? rgb.g : rgb.b);
rgbMax = rgb.r > rgb.g ? (rgb.r > rgb.b ? rgb.r : rgb.b) : (rgb.g > rgb.b ? rgb.g : rgb.b);
hsv.v = rgbMax;
if (hsv.v == 0)
{
hsv.h = 0;
hsv.s = 0;
return hsv;
}
hsv.s = 255 * ((long)(rgbMax - rgbMin)) / hsv.v;
if (hsv.s == 0)
{
hsv.h = 0;
return hsv;
}
if (rgbMax == rgb.r)
hsv.h = 0 + 43 * (rgb.g - rgb.b) / (rgbMax - rgbMin);
else if (rgbMax == rgb.g)
hsv.h = 85 + 43 * (rgb.b - rgb.r) / (rgbMax - rgbMin);
else
hsv.h = 171 + 43 * (rgb.r - rgb.g) / (rgbMax - rgbMin);
return hsv;
}
this should be on here: it works anyway. And it looks good compared to the above ones.
hlsl code
float3 Hue(float H)
{
half R = abs(H * 6 - 3) - 1;
half G = 2 - abs(H * 6 - 2);
half B = 2 - abs(H * 6 - 4);
return saturate(half3(R,G,B));
}
half4 HSVtoRGB(in half3 HSV)
{
return half4(((Hue(HSV.x) - 1) * HSV.y + 1) * HSV.z,1);
}
float3 is 16 bit precision vector3 data type, i.e. float3 hue() is returns a data type (x,y,z) e.g. (r,g,b), half is same with half precision, 8bit, a float4 is (r,g,b,a) 4 values.
This isn't C, but it's certainly does work. All the other methods I see here work by casing everything into parts of a hexagon, and approximating "angles" from that. By instead starting with a different equation using cosines, and solving for h s and v, you get a lot nicer relationship between hsv and rgb, and tweening becomes smoother (at the cost of it being way slower).
Assume everything is floating point. If r g and b go from 0 to 1, h goes from 0 to 2pi, v goes from 0 to 4/3, and s goes from 0 to 2/3.
The following code is written in Lua. It's easily translatable into anything else.
local hsv do
hsv ={}
local atan2 =math.atan2
local cos =math.cos
local sin =math.sin
function hsv.fromrgb(r,b,g)
local c=r+g+b
if c<1e-4 then
return 0,2/3,0
else
local p=2*(b*b+g*g+r*r-g*r-b*g-b*r)^0.5
local h=atan2(b-g,(2*r-b-g)/3^0.5)
local s=p/(c+p)
local v=(c+p)/3
return h,s,v
end
end
function hsv.torgb(h,s,v)
local r=v*(1+s*(cos(h)-1))
local g=v*(1+s*(cos(h-2.09439)-1))
local b=v*(1+s*(cos(h+2.09439)-1))
return r,g,b
end
function hsv.tween(h0,s0,v0,h1,s1,v1,t)
local dh=(h1-h0+3.14159)%6.28318-3.14159
local h=h0+t*dh
local s=s0+t*(s1-s0)
local v=v0+t*(v1-v0)
return h,s,v
end
end
GLSL Shader version based on Patapoms answer:
vec3 HSV2RGB( vec3 hsv )
{
hsv.x = mod( 100.0 + hsv.x, 1.0 ); // Ensure [0,1[
float HueSlice = 6.0 * hsv.x; // In [0,6[
float HueSliceInteger = floor( HueSlice );
float HueSliceInterpolant = HueSlice - HueSliceInteger; // In [0,1[ for each hue slice
vec3 TempRGB = vec3( hsv.z * (1.0 - hsv.y), hsv.z * (1.0 - hsv.y * HueSliceInterpolant), hsv.z * (1.0 - hsv.y * (1.0 - HueSliceInterpolant)) );
float IsOddSlice = mod( HueSliceInteger, 2.0 ); // 0 if even (slices 0, 2, 4), 1 if odd (slices 1, 3, 5)
float ThreeSliceSelector = 0.5 * (HueSliceInteger - IsOddSlice); // (0, 1, 2) corresponding to slices (0, 2, 4) and (1, 3, 5)
vec3 ScrollingRGBForEvenSlices = vec3( hsv.z, TempRGB.zx ); // (V, Temp Blue, Temp Red) for even slices (0, 2, 4)
vec3 ScrollingRGBForOddSlices = vec3( TempRGB.y, hsv.z, TempRGB.x ); // (Temp Green, V, Temp Red) for odd slices (1, 3, 5)
vec3 ScrollingRGB = mix( ScrollingRGBForEvenSlices, ScrollingRGBForOddSlices, IsOddSlice );
float IsNotFirstSlice = clamp( ThreeSliceSelector, 0.0,1.0 ); // 1 if NOT the first slice (true for slices 1 and 2)
float IsNotSecondSlice = clamp( ThreeSliceSelector-1.0, 0.0,1. ); // 1 if NOT the first or second slice (true only for slice 2)
return mix( ScrollingRGB.xyz, mix( ScrollingRGB.zxy, ScrollingRGB.yzx, IsNotSecondSlice ), IsNotFirstSlice ); // Make the RGB rotate right depending on final slice index
}
I'm not C++ developer so I will not provide code. But I can provide simple hsv2rgb algorithm (rgb2hsv here) which I currently discover - I update wiki with description: HSV and HLS. Main improvement is that I carefully observe r,g,b as hue functions and introduce simpler shape function to describe them (without loosing accuracy). The Algorithm - on input we have: h (0-255), s (0-255), v(0-255)
r = 255*f(5), g = 255*f(3), b = 255*f(1)
We use function f described as follows
f(n) = v/255 - (v/255)*(s/255)*max(min(k,4-k,1),0)
where (mod can return fraction part; k is floating point number)
k = (n+h*360/(255*60)) mod 6;
Here are snippets/PoV in SO in JS: HSV and HSL
Here is an online converter with an article after explaining all the algorithms for color conversion.
You probably would prefer a ready-made C version but it should not be long to apply and it could help other people trying to do the same in another language or with another color space.
Here's one which i just wrote this morning based on pretty much the same math as above:
/* math adapted from: http://www.rapidtables.com/convert/color/rgb-to-hsl.htm
* reasonably optimized for speed, without going crazy */
void rgb_to_hsv (int r, int g, int b, float *r_h, float *r_s, float *r_v) {
float rp, gp, bp, cmax, cmin, delta, l;
int cmaxwhich, cminwhich;
rp = ((float) r) / 255;
gp = ((float) g) / 255;
bp = ((float) b) / 255;
//debug ("rgb=%d,%d,%d rgbprime=%f,%f,%f", r, g, b, rp, gp, bp);
cmax = rp;
cmaxwhich = 0; /* faster comparison afterwards */
if (gp > cmax) { cmax = gp; cmaxwhich = 1; }
if (bp > cmax) { cmax = bp; cmaxwhich = 2; }
cmin = rp;
cminwhich = 0;
if (gp < cmin) { cmin = gp; cminwhich = 1; }
if (bp < cmin) { cmin = bp; cminwhich = 2; }
//debug ("cmin=%f,cmax=%f", cmin, cmax);
delta = cmax - cmin;
/* HUE */
if (delta == 0) {
*r_h = 0;
} else {
switch (cmaxwhich) {
case 0: /* cmax == rp */
*r_h = HUE_ANGLE * (fmod ((gp - bp) / delta, 6));
break;
case 1: /* cmax == gp */
*r_h = HUE_ANGLE * (((bp - rp) / delta) + 2);
break;
case 2: /* cmax == bp */
*r_h = HUE_ANGLE * (((rp - gp) / delta) + 4);
break;
}
if (*r_h < 0)
*r_h += 360;
}
/* LIGHTNESS/VALUE */
//l = (cmax + cmin) / 2;
*r_v = cmax;
/* SATURATION */
/*if (delta == 0) {
*r_s = 0;
} else {
*r_s = delta / (1 - fabs (1 - (2 * (l - 1))));
}*/
if (cmax == 0) {
*r_s = 0;
} else {
*r_s = delta / cmax;
}
//debug ("rgb=%d,%d,%d ---> hsv=%f,%f,%f", r, g, b, *r_h, *r_s, *r_v);
}
void hsv_to_rgb (float h, float s, float v, int *r_r, int *r_g, int *r_b) {
if (h > 360)
h -= 360;
if (h < 0)
h += 360;
h = CLAMP (h, 0, 360);
s = CLAMP (s, 0, 1);
v = CLAMP (v, 0, 1);
float c = v * s;
float x = c * (1 - fabsf (fmod ((h / HUE_ANGLE), 2) - 1));
float m = v - c;
float rp, gp, bp;
int a = h / 60;
//debug ("h=%f, a=%d", h, a);
switch (a) {
case 0:
rp = c;
gp = x;
bp = 0;
break;
case 1:
rp = x;
gp = c;
bp = 0;
break;
case 2:
rp = 0;
gp = c;
bp = x;
break;
case 3:
rp = 0;
gp = x;
bp = c;
break;
case 4:
rp = x;
gp = 0;
bp = c;
break;
default: // case 5:
rp = c;
gp = 0;
bp = x;
break;
}
*r_r = (rp + m) * 255;
*r_g = (gp + m) * 255;
*r_b = (bp + m) * 255;
//debug ("hsv=%f,%f,%f, ---> rgb=%d,%d,%d", h, s, v, *r_r, *r_g, *r_b);
}
I created a possibly faster implementation by using 0-1 range for RGBS and V and 0-6 range for Hue (avoiding the division), and grouping the cases into two categories:
#include <math.h>
#include <float.h>
void fromRGBtoHSV(float rgb[], float hsv[])
{
// for(int i=0; i<3; ++i)
// rgb[i] = max(0.0f, min(1.0f, rgb[i]));
hsv[0] = 0.0f;
hsv[2] = max(rgb[0], max(rgb[1], rgb[2]));
const float delta = hsv[2] - min(rgb[0], min(rgb[1], rgb[2]));
if (delta < FLT_MIN)
hsv[1] = 0.0f;
else
{
hsv[1] = delta / hsv[2];
if (rgb[0] >= hsv[2])
{
hsv[0] = (rgb[1] - rgb[2]) / delta;
if (hsv[0] < 0.0f)
hsv[0] += 6.0f;
}
else if (rgb[1] >= hsv[2])
hsv[0] = 2.0f + (rgb[2] - rgb[0]) / delta;
else
hsv[0] = 4.0f + (rgb[0] - rgb[1]) / delta;
}
}
void fromHSVtoRGB(const float hsv[], float rgb[])
{
if(hsv[1] < FLT_MIN)
rgb[0] = rgb[1] = rgb[2] = hsv[2];
else
{
const float h = hsv[0];
const int i = (int)h;
const float f = h - i;
const float p = hsv[2] * (1.0f - hsv[1]);
if (i & 1) {
const float q = hsv[2] * (1.0f - (hsv[1] * f));
switch(i) {
case 1:
rgb[0] = q;
rgb[1] = hsv[2];
rgb[2] = p;
break;
case 3:
rgb[0] = p;
rgb[1] = q;
rgb[2] = hsv[2];
break;
default:
rgb[0] = hsv[2];
rgb[1] = p;
rgb[2] = q;
break;
}
}
else
{
const float t = hsv[2] * (1.0f - (hsv[1] * (1.0f - f)));
switch(i) {
case 0:
rgb[0] = hsv[2];
rgb[1] = t;
rgb[2] = p;
break;
case 2:
rgb[0] = p;
rgb[1] = hsv[2];
rgb[2] = t;
break;
default:
rgb[0] = t;
rgb[1] = p;
rgb[2] = hsv[2];
break;
}
}
}
}
For 0-255 range just * 255.0f + 0.5f and assign it to an unsigned char (or divide by 255.0 to get the opposite).
// This pair of functions convert HSL to RGB and vice-versa.
// It's pretty optimized for execution speed
typedef unsigned char BYTE
typedef struct _RGB
{
BYTE R;
BYTE G;
BYTE B;
} RGB, *pRGB;
typedef struct _HSL
{
float H; // color Hue (0.0 to 360.0 degrees)
float S; // color Saturation (0.0 to 1.0)
float L; // Luminance (0.0 to 1.0)
float V; // Value (0.0 to 1.0)
} HSL, *pHSL;
float *fMin (float *a, float *b)
{
return *a <= *b? a : b;
}
float *fMax (float *a, float *b)
{
return *a >= *b? a : b;
}
void RGBtoHSL (pRGB rgb, pHSL hsl)
{
// See https://en.wikipedia.org/wiki/HSL_and_HSV
// rgb->R, rgb->G, rgb->B: [0 to 255]
float r = (float) rgb->R / 255;
float g = (float) rgb->G / 255;
float b = (float) rgb->B / 255;
float *min = fMin(fMin(&r, &g), &b);
float *max = fMax(fMax(&r, &g), &b);
float delta = *max - *min;
// L, V [0.0 to 1.0]
hsl->L = (*max + *min)/2;
hsl->V = *max;
// Special case for H and S
if (delta == 0)
{
hsl->H = 0.0f;
hsl->S = 0.0f;
}
else
{
// Special case for S
if((*max == 0) || (*min == 1))
hsl->S = 0;
else
// S [0.0 to 1.0]
hsl->S = (2 * *max - 2*hsl->L)/(1 - fabsf(2*hsl->L - 1));
// H [0.0 to 360.0]
if (max == &r) hsl->H = fmod((g - b)/delta, 6); // max is R
else if (max == &g) hsl->H = (b - r)/delta + 2; // max is G
else hsl->H = (r - g)/delta + 4; // max is B
hsl->H *= 60;
}
}
void HSLtoRGB (pHSL hsl, pRGB rgb)
{
// See https://en.wikipedia.org/wiki/HSL_and_HSV
float a, k, fm1, fp1, f1, f2, *f3;
// L, V, S: [0.0 to 1.0]
// rgb->R, rgb->G, rgb->B: [0 to 255]
fm1 = -1;
fp1 = 1;
f1 = 1-hsl->L;
a = hsl->S * *fMin(&hsl->L, &f1);
k = fmod(0 + hsl->H/30, 12);
f1 = k - 3;
f2 = 9 - k;
f3 = fMin(fMin(&f1, &f2), &fp1) ;
rgb->R = (BYTE) (255 * (hsl->L - a * *fMax(f3, &fm1)));
k = fmod(8 + hsl->H/30, 12);
f1 = k - 3;
f2 = 9 - k;
f3 = fMin(fMin(&f1, &f2), &fp1) ;
rgb->G = (BYTE) (255 * (hsl->L - a * *fMax(f3, &fm1)));
k = fmod(4 + hsl->H/30, 12);
f1 = k - 3;
f2 = 9 - k;
f3 = fMin(fMin(&f1, &f2), &fp1) ;
rgb->B = (BYTE) (255 * (hsl->L - a * *fMax(f3, &fm1)));
}
This link has formulas for what you want. Then it's a matter of performance (numerical techniques) if you want it fast.
精彩评论