How to create a CPU spike with a bash command
I want to create a near 100% load on a Linux machine. It's quad core system and I want all cores going full speed. Ideally, the CPU load would last a designated amount of time and then stop. I'm hoping there's some trick in bash. 开发者_JS百科 I'm thinking some sort of infinite loop.
I use stress for this kind of thing, you can tell it how many cores to max out.. it allows for stressing memory and disk as well.
Example to stress 2 cores for 60 seconds
stress --cpu 2 --timeout 60
You can also do
dd if=/dev/zero of=/dev/null
To run more of those to put load on more cores, try to fork it:
fulload() { dd if=/dev/zero of=/dev/null | dd if=/dev/zero of=/dev/null | dd if=/dev/zero of=/dev/null | dd if=/dev/zero of=/dev/null & }; fulload; read; killall dd
Repeat the command in the curly brackets as many times as the number of threads you want to produce (here 4 threads). Simple enter hit will stop it (just make sure no other dd is running on this user or you kill it too).
I think this one is simpler. Open Terminal and type the following and press Enter.
yes > /dev/null &
To fully utilize modern CPUs, one line is not enough, you may need to repeat the command to exhaust all the CPU power.
To end all of this, simply put
killall yes
The idea was originally found here, although it was intended for Mac users, but this should work for *nix as well.
Although I'm late to the party, this post is among the top results in the google search "generate load in linux".
The result marked as solution could be used to generate a system load, i'm preferring to use sha1sum /dev/zero
to impose a load on a cpu-core.
The idea is to calculate a hash sum from an infinite datastream (eg. /dev/zero, /dev/urandom, ...) this process will try to max out a cpu-core until the process is aborted. To generate a load for more cores, multiple commands can be piped together.
eg. generate a 2 core load:
sha1sum /dev/zero | sha1sum /dev/zero
To load 3 cores for 5 seconds:
seq 3 | xargs -P0 -n1 timeout 5 yes > /dev/null
This results in high kernel (sys) load from the many write() system calls.
If you prefer mostly userland cpu load:
seq 3 | xargs -P0 -n1 timeout 5 md5sum /dev/zero
If you just want the load to continue until you press Ctrl-C:
seq 3 | xargs -P0 -n1 md5sum /dev/zero
One core (doesn't invoke external process):
while true; do true; done
Two cores:
while true; do /bin/true; done
The latter only makes both of mine go to ~50% though...
This one will make both go to 100%:
while true; do echo; done
Here is a program that you can download Here
Install easily on your Linux system
./configure
make
make install
and launch it in a simple command line
stress -c 40
to stress all your CPUs (however you have) with 40 threads each running a complex sqrt
computation on a ramdomly generated numbers.
You can even define the timeout of the program
stress -c 40 -timeout 10s
unlike the proposed solution with the dd
command, which deals essentially with IO
and therefore doesn't really overload your system because working with data.
The stress program really overloads the system because dealing with computation.
An infinite loop is the idea I also had. A freaky-looking one is:
while :; do :; done
(:
is the same as true
, does nothing and exits with zero)
You can call that in a subshell and run in the background. Doing that $num_cores
times should be enough. After sleeping the desired time you can kill them all, you get the PIDs with jobs -p
(hint: xargs
)
:(){ :|:& };:
This fork bomb will cause havoc to the CPU and will likely crash your computer.
I would split the thing in 2 scripts :
infinite_loop.bash :
#!/bin/bash
while [ 1 ] ; do
# Force some computation even if it is useless to actually work the CPU
echo $((13**99)) 1>/dev/null 2>&1
done
cpu_spike.bash :
#!/bin/bash
# Either use environment variables for NUM_CPU and DURATION, or define them here
for i in `seq ${NUM_CPU}` : do
# Put an infinite loop on each CPU
infinite_loop.bash &
done
# Wait DURATION seconds then stop the loops and quit
sleep ${DURATION}
killall infinite_loop.bash
to increase load or consume CPU 100% or X%
sha1sum /dev/zero &
on some system this will increase the load in slots of X%, in that case you have to run the same command multiple time.
then you can see CPU uses by typing command
top
to release the load
killall sha1sum
cat /dev/urandom > /dev/null
#!/bin/bash
duration=120 # seconds
instances=4 # cpus
endtime=$(($(date +%s) + $duration))
for ((i=0; i<instances; i++))
do
while (($(date +%s) < $endtime)); do :; done &
done
I've used bc
(binary calculator), asking them for PI with a big lot of decimals.
$ for ((i=0;i<$NUMCPU;i++));do
echo 'scale=100000;pi=4*a(1);0' | bc -l &
done ;\
sleep 4; \
killall bc
with NUMCPU (under Linux):
$ NUMCPU=$(grep $'^processor\t*:' /proc/cpuinfo |wc -l)
This method is strong but seem system friendly, as I've never crashed a system using this.
#!/bin/bash
while [ 1 ]
do
#Your code goes here
done
I went through the Internet to find something like it and found this very handy cpu hammer script.
#!/bin/sh
# unixfoo.blogspot.com
if [ $1 ]; then
NUM_PROC=$1
else
NUM_PROC=10
fi
for i in `seq 0 $((NUM_PROC-1))`; do
awk 'BEGIN {for(i=0;i<10000;i++)for(j=0;j<10000;j++);}' &
done
Using examples mentioned here, but also help from IRC, I developed my own CPU stress testing script. It uses a subshell per thread and the endless loop technique. You can also specify the number of threads and the amount of time interactively.
#!/bin/bash
# Simple CPU stress test script
# Read the user's input
echo -n "Number of CPU threads to test: "
read cpu_threads
echo -n "Duration of the test (in seconds): "
read cpu_time
# Run an endless loop on each thread to generate 100% CPU
echo -e "\E[32mStressing ${cpu_threads} threads for ${cpu_time} seconds...\E[37m"
for i in $(seq ${cpu_threads}); do
let thread=${i}-1
(taskset -cp ${thread} $BASHPID; while true; do true; done) &
done
# Once the time runs out, kill all of the loops
sleep ${cpu_time}
echo -e "\E[32mStressing complete.\E[37m"
kill 0
Utilizing ideas here, created code which exits automatically after a set duration, don't have to kill processes --
#!/bin/bash
echo "Usage : ./killproc_ds.sh 6 60 (6 threads for 60 secs)"
# Define variables
NUM_PROCS=${1:-6} #How much scaling you want to do
duration=${2:-20} # seconds
function infinite_loop {
endtime=$(($(date +%s) + $duration))
while (($(date +%s) < $endtime)); do
#echo $(date +%s)
echo $((13**99)) 1>/dev/null 2>&1
$(dd if=/dev/urandom count=10000 status=none| bzip2 -9 >> /dev/null) 2>&1 >&/dev/null
done
echo "Done Stressing the system - for thread $1"
}
echo Running for duration $duration secs, spawning $NUM_PROCS threads in background
for i in `seq ${NUM_PROCS}` ;
do
# Put an infinite loop
infinite_loop $i &
done
You can try to test the performance of cryptographic algorithms.
openssl speed -multi 4
If you do not want to install additional software, you may use a compression utility which utilizes all CPU cores automatically. For example, xz:
cat /dev/zero | xz -T0 > /dev/null
This takes infinite stream of dummy data from /dev/zero and compresses it using all cores available in the system.
This does a trick for me:
bash -c 'for (( I=100000000000000000000 ; I>=0 ; I++ )) ; do echo $(( I+I*I )) & echo $(( I*I-I )) & echo $(( I-I*I*I )) & echo $(( I+I*I*I )) ; done' &>/dev/null
and it uses nothing except bash.
To enhance dimba's answer and provide something more pluggable (because i needed something similar). I have written the following using the dd load-up concept :D
It will check current cores, and create that many dd threads. Start and End core load with Enter
#!/bin/bash
load_dd() {
dd if=/dev/zero of=/dev/null
}
fulload() {
unset LOAD_ME_UP_SCOTTY
export cores="$(grep proc /proc/cpuinfo -c)"
for i in $( seq 1 $( expr $cores - 1 ) )
do
export LOAD_ME_UP_SCOTTY="${LOAD_ME_UP_SCOTTY}$(echo 'load_dd | ')"
done
export LOAD_ME_UP_SCOTTY="${LOAD_ME_UP_SCOTTY}$(echo 'load_dd &')"
eval ${LOAD_ME_UP_SCOTTY}
}
echo press return to begin and stop fullload of cores
read
fulload
read
killall -9 dd
Dimba's dd if=/dev/zero of=/dev/null
is definitely correct, but also worth mentioning is verifying maxing the cpu to 100% usage. You can do this with
ps -axro pcpu | awk '{sum+=$1} END {print sum}'
This asks for ps output of a 1-minute average of the cpu usage by each process, then sums them with awk. While it's a 1 minute average, ps is smart enough to know if a process has only been around a few seconds and adjusts the time-window accordingly. Thus you can use this command to immediately see the result.
awk
is a good way to write a long-running loop that's CPU bound without generating a lot of memory traffic or system calls, or using any significant amount of memory or polluting caches so it slows down other cores a minimal amount. (stress
or stress-ng
can also do that if you either installed, if you use a simple CPU-stress method.)
awk 'BEGIN{for(i=0;i<100000000;i++){}}' # about 3 seconds on 4GHz Skylake
It's a counted loop so you can make it exit on its own after a finite amount of time. (Awk uses FP numbers, so a limit like 2^54
might not be reachable with i++
due to rounding, but that's way larger than needed for a few seconds to minutes.)
To run it in parallel, use a shell loop to start it in the background n times
for i in {1..6};do awk 'BEGIN{for(i=0;i<100000000;i++){}}' & done
###### 6 threads each running about 3 seconds
$ for i in {1..6};do awk 'BEGIN{for(i=0;i<100000000;i++){}}' & done
[1] 3047561
[2] 3047562
[3] 3047563
[4] 3047564
[5] 3047565
[6] 3047566
$ # this shell is usable.
(wait a while before pressing return)
[1] Done awk 'BEGIN{for(i=0;i<100000000;i++){}}'
[2] Done awk 'BEGIN{for(i=0;i<100000000;i++){}}'
[3] Done awk 'BEGIN{for(i=0;i<100000000;i++){}}'
[4] Done awk 'BEGIN{for(i=0;i<100000000;i++){}}'
[5]- Done awk 'BEGIN{for(i=0;i<100000000;i++){}}'
[6]+ Done awk 'BEGIN{for(i=0;i<100000000;i++){}}'
$
I used perf
to see what kind of load it put on the CPU: it runs 2.6 instructions per clock cycle, so it's not the most friendly to a hyperthread sharing the same physical core. But it has a very small cache footprint, getting negligible cache misses even in L1d cache. And strace
will show it makes no system calls until exit.
$ perf stat -r5 -d awk 'BEGIN{for(i=0;i<100000000;i++){}}'
Performance counter stats for 'awk BEGIN{for(i=0;i<100000000;i++){}}' (5 runs):
3,277.56 msec task-clock # 0.997 CPUs utilized ( +- 0.24% )
7 context-switches # 2.130 /sec ( +- 12.29% )
1 cpu-migrations # 0.304 /sec ( +- 40.00% )
180 page-faults # 54.765 /sec ( +- 0.18% )
13,708,412,234 cycles # 4.171 GHz ( +- 0.18% ) (62.29%)
35,786,486,833 instructions # 2.61 insn per cycle ( +- 0.03% ) (74.92%)
9,696,339,695 branches # 2.950 G/sec ( +- 0.02% ) (74.99%)
340,155 branch-misses # 0.00% of all branches ( +-122.42% ) (75.08%)
12,108,293,527 L1-dcache-loads # 3.684 G/sec ( +- 0.04% ) (75.10%)
217,064 L1-dcache-load-misses # 0.00% of all L1-dcache accesses ( +- 17.23% ) (75.10%)
48,695 LLC-loads # 14.816 K/sec ( +- 31.69% ) (49.90%)
5,966 LLC-load-misses # 13.45% of all LL-cache accesses ( +- 31.45% ) (49.81%)
3.28711 +- 0.00772 seconds time elapsed ( +- 0.23% )
The most "friendly" to the other hyperthread on an x86 CPU would be a C program like this, which just runs a pause
instruction in a loop. (Or portably, a Rust program that runs std::hint::spin_loop
.) As far as the OS's process scheduler, it stays in user-space (nothing like a yield()
system call), but in hardware it doesn't take up many resources, letting the other logical core have the front-end for multiple cycles.
#include <immintrin.h>
int main(){ // use atoi(argv[1])*10000ULL as a loop count if you want.
while(1) _mm_pause();
}
I combined some of the answers and added a way to scale the stress to all available cpus:
#!/bin/bash
function infinite_loop {
while [ 1 ] ; do
# Force some computation even if it is useless to actually work the CPU
echo $((13**99)) 1>/dev/null 2>&1
done
}
# Either use environment variables for DURATION, or define them here
NUM_CPU=$(grep -c ^processor /proc/cpuinfo 2>/dev/null || sysctl -n hw.ncpu)
PIDS=()
for i in `seq ${NUM_CPU}` ;
do
# Put an infinite loop on each CPU
infinite_loop &
PIDS+=("$!")
done
# Wait DURATION seconds then stop the loops and quit
sleep ${DURATION}
# Parent kills its children
for pid in "${PIDS[@]}"
do
kill $pid
done
Just paste this bad boy into the SSH or console of any server running linux. You can kill the processes manually, but I just shutdown the server when I'm done, quicker.
Edit: I have updated this script to now have a timer feature so that there is no need to kill the processes.
read -p "Please enter the number of minutes for test >" MINTEST && [[ $MINTEST == ?(-)+([0-9]) ]]; NCPU="$(grep -c ^processor /proc/cpuinfo)"; ((endtime=$(date +%s) + ($MINTEST*60))); NCPU=$((NCPU-1)); for ((i=1; i<=$NCPU; i++)); do while (($(date +%s) < $endtime)); do : ; done & done
精彩评论