Calculate primes p and q from private exponent (d), public exponent (e) and the modulus (n)
How do I calculate the p and q parameters from e (publickey), d (privatekey) and modulus?
I have BigInteger keys at hand I can copy paste into code. One publickey, one privatekey and a modulus.
I need to calculate the RSA parameters p and q from this. But I suspect there is a library for that which I was unable to find with google. Any ideas? Thanks.
This does not have to be brute force, since I'm not after the private key. I just have a legacy system which stores a public, private key pair and a modulus and I need to get them into c# to use with RSACryptoServiceProvider.
So it comes down to calculating (p+q) by
public BigInteger _pPlusq()
{
int k = (this.getExponent() * this.getD() / this.getModulus()).IntValue();
BigInteger phiN = (this.getExponent() * this.getD() - 1) / k;
return phiN - this.getModul开发者_如何学Cus() - 1;
}
but this doesn't seem to work. Can you spot the problem?
5 hours later... :)
Ok. How can I select a random number out of Zn* (http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n) in C#?
Let's assume that e is small (that's the common case; the Traditional public exponent is 65537). Let's also suppose that ed = 1 mod phi(n), where phi(n) = (p-1)(q-1) (this is not necessarily the case; the RSA requirements are that ed = 1 mod lcm(p-1,q-1) and phi(n) is only a multiple of lcm(p-1,q-1)).
Now you have ed = k*phi(n)+1 for some integer k. Since d is smaller than phi(n), you know that k < e. So you only have a small number of k to try. Actually, phi(n) is close to n (the difference being on the order of sqrt(n); in other words, when written out in bits, the upper half of phi(n) is identical to that of n) so you can compute k' with: k'=round(ed/n). k' is very close to k (i.e. |k'-k| <= 1) as long as the size of e is no more than half the size of n.
Given k, you easily get phi(n) = (ed-1)/k. It so happens that:
phi(n) = (p-1)(q-1) = pq - (p+q) + 1 = n + 1 - (p+q)
Thus, you get p+q = n + 1 - phi(n). You also have pq. It is time to remember that for all real numbers a and b, a and b are the two solutions of the quadratic equation X2-(a+b)X+ab. So, given p+q and pq, p and q are obtained by solving the quadratic equation:
p = ((p+q) + sqrt((p+q)2 - 4*pq))/2
q = ((p+q) - sqrt((p+q)2 - 4*pq))/2
In the general case, e and d may have arbitrary sizes (possibly greater than n), because all that RSA needs is that ed = 1 mod (p-1) and ed = 1 mod (q-1). There is a generic (and fast) method which looks a bit like the Miller-Rabin primality test. It is described in the Handbook of Applied Cryptography (chapter 8, section 8.2.2, page 287). That method is conceptually a bit more complex (it involves modular exponentiation) but may be simpler to implement (because there is no square root).
There is a procedure to recover p and q from n, e and d described in NIST Special Publication 800-56B R1 Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography in Appendix C.
The steps involved are:
- Let k = de – 1. If k is odd, then go to Step 4.
- Write k as k = 2tr, where r is the largest odd integer dividing k, and t ≥ 1. Or in simpler terms, divide k repeatedly by 2 until you reach an odd number.
- For i = 1 to 100 do:
- Generate a random integer g in the range [0, n−1].
- Let y = gr mod n
- If y = 1 or y = n – 1, then go to Step 3.1 (i.e. repeat this loop).
- For j = 1 to t – 1 do:
- Let x = y2 mod n
- If x = 1, go to (outer) Step 5.
- If x = n – 1, go to Step 3.1.
- Let y = x.
- Let x = y2 mod n
- If x = 1, go to (outer) Step 5.
- Continue
- Output “prime factors not found” and stop.
- Let p = GCD(y – 1, n) and let q = n/p
- Output (p, q) as the prime factors.
I recently wrote an implementation in Java. Not directly useful for C# I realise, but perhaps it can be easily ported:
// Step 1: Let k = de – 1. If k is odd, then go to Step 4
BigInteger k = d.multiply(e).subtract(ONE);
if (isEven(k)) {
// Step 2 (express k as (2^t)r, where r is the largest odd integer
// dividing k and t >= 1)
BigInteger r = k;
BigInteger t = ZERO;
do {
r = r.divide(TWO);
t = t.add(ONE);
} while (isEven(r));
// Step 3
Random random = new Random();
boolean success = false;
BigInteger y = null;
step3loop: for (int i = 1; i <= 100; i++) {
// 3a
BigInteger g = getRandomBi(n, random);
// 3b
y = g.modPow(r, n);
// 3c
if (y.equals(ONE) || y.equals(n.subtract(ONE))) {
// 3g
continue step3loop;
}
// 3d
for (BigInteger j = ONE; j.compareTo(t) <= 0; j = j.add(ONE)) {
// 3d1
BigInteger x = y.modPow(TWO, n);
// 3d2
if (x.equals(ONE)) {
success = true;
break step3loop;
}
// 3d3
if (x.equals(n.subtract(ONE))) {
// 3g
continue step3loop;
}
// 3d4
y = x;
}
// 3e
BigInteger x = y.modPow(TWO, n);
if (x.equals(ONE)) {
success = true;
break step3loop;
}
// 3g
// (loop again)
}
if (success) {
// Step 5
p = y.subtract(ONE).gcd(n);
q = n.divide(p);
return;
}
}
// Step 4
throw new RuntimeException("Prime factors not found");
This code uses a few helper definitions/methods:
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = BigInteger.valueOf(2);
private static final BigInteger ZERO = BigInteger.ZERO;
private static boolean isEven(BigInteger bi) {
return bi.mod(TWO).equals(ZERO);
}
private static BigInteger getRandomBi(BigInteger n, Random rnd) {
// From http://stackoverflow.com/a/2290089
BigInteger r;
do {
r = new BigInteger(n.bitLength(), rnd);
} while (r.compareTo(n) >= 0);
return r;
}
I've adapted the Java code provided by Duncan in C#, if anyone is interested:
public static void RecoverPQ(
BigInteger n,
BigInteger e,
BigInteger d,
out BigInteger p,
out BigInteger q
)
{
int nBitCount = (int)(BigInteger.Log(n, 2)+1);
// Step 1: Let k = de – 1. If k is odd, then go to Step 4
BigInteger k = d * e - 1;
if (k.IsEven)
{
// Step 2 (express k as (2^t)r, where r is the largest odd integer
// dividing k and t >= 1)
BigInteger r = k;
BigInteger t = 0;
do
{
r = r / 2;
t = t + 1;
} while (r.IsEven);
// Step 3
var rng = new RNGCryptoServiceProvider();
bool success = false;
BigInteger y = 0;
for (int i = 1; i <= 100; i++) {
// 3a
BigInteger g;
do
{
byte[] randomBytes = new byte[nBitCount / 8 + 1]; // +1 to force a positive number
rng.GetBytes(randomBytes);
randomBytes[randomBytes.Length - 1] = 0;
g = new BigInteger(randomBytes);
} while (g >= n);
// 3b
y = BigInteger.ModPow(g, r, n);
// 3c
if (y == 1 || y == n-1) {
// 3g
continue;
}
// 3d
BigInteger x;
for (BigInteger j = 1; j < t; j = j + 1) {
// 3d1
x = BigInteger.ModPow(y, 2, n);
// 3d2
if (x == 1) {
success = true;
break;
}
// 3d3
if (x == n-1) {
// 3g
continue;
}
// 3d4
y = x;
}
// 3e
x = BigInteger.ModPow(y, 2, n);
if (x == 1) {
success = true;
break;
}
// 3g
// (loop again)
}
if (success) {
// Step 5
p = BigInteger.GreatestCommonDivisor((y - 1), n);
q = n / p;
return;
}
}
throw new Exception("Cannot compute P and Q");
}
This uses the standard System.Numerics.BigInteger class.
This was tested by the following unit test:
BigInteger n = BigInteger.Parse("9086945041514605868879747720094842530294507677354717409873592895614408619688608144774037743497197616416703125668941380866493349088794356554895149433555027");
BigInteger e = 65537;
BigInteger d = BigInteger.Parse("8936505818327042395303988587447591295947962354408444794561435666999402846577625762582824202269399672579058991442587406384754958587400493169361356902030209");
BigInteger p;
BigInteger q;
RecoverPQ(n, e, d, out p, out q);
Assert.AreEqual(n, p * q);
I implemented the method described by Thomas Pornin.
The BigInteger class is Chew Keong TAN's C# version (check codeproject comments for bug fixes)
/// EXAMPLE (Hex Strings)
/// N(MODULUS) = "DB2CB41E112BACFA2BD7C3D3D7967E84FB9434FC261F9D090A8983947DAF8488D3DF8FBDCC1F92493585E134A1B42DE519F463244D7ED384E26D516CC7A4FF7895B1992140043AACADFC12E856B202346AF8226B1A882137DC3C5A57F0D2815C1FCD4BB46FA9157FDFFD79EC3A10A824CCC1EB3CE0B6B4396AE236590016BA69"
/// D(PRIVATE EXPONENT) = "18B44A3D155C61EBF4E3261C8BB157E36F63FE30E9AF28892B59E2ADEB18CC8C8BAD284B9165819CA4DEC94AA06B69BCE81706D1C1B668EB128695E5F7FEDE18A908A3011A646A481D3EA71D8A387D474609BD57A882B182E047DE80E04B4221416BD39DFA1FAC0300641962ADB109E28CAF50061B68C9CABD9B00313C0F46ED"
/// E(PUBLIC EXPONENT) = "010001"
/// RESULTS:
/// DP = "899324E9A8B70CA05612D8BAE70844BBF239D43E2E9CCADFA11EBD43D0603FE70A63963FE3FFA38550B5FEB3DA870D2677927B91542D148FA4BEA6DCD6B2FF57"
/// DQ = "E43C98265BF97066FC078FD464BFAC089628765A0CE18904F8C15318A6850174F1A4596D3E8663440115D0EEB9157481E40DCA5EE569B1F7F4EE30AC0439C637"
/// INVERSEQ = "395B8CF3240C325B0F5F86A05ABCF0006695FAB9235589A56759ECBF2CD3D3DFDE0D6F16F0BE5C70CEF22348D2D09FA093C01D909D25BC1DB11DF8A4F0CE552"
/// P = "ED6CF6699EAC99667E0AFAEF8416F902C00B42D6FFA2C3C18C7BE4CF36013A91F6CF23047529047660DE14A77D13B74FF31DF900541ED37A8EF89340C623759B"
/// Q = "EC52382046AA660794CC1A907F8031FDE1A554CDE17E8AA216AEDC92DB2E58B0529C76BD0498E00BAA792058B2766C40FD7A9CC2F6782942D91471905561324B"
public static RSACryptoServiceProvider CreateRSAPrivateKey(string mod, string privExponent, string pubExponent)
{
var rsa = new RSACryptoServiceProvider
{
PersistKeyInCsp = false
};
var n = new BigInteger(mod, 16);
var d = new BigInteger(privExponent, 16);
var e = new BigInteger(pubExponent, 16);
var zero = new BigInteger(0);
var one = new BigInteger(1);
var two = new BigInteger(2);
var four = new BigInteger(4);
BigInteger de = e*d;
BigInteger modulusplus1 = n + one;
BigInteger deminus1 = de - one;
BigInteger p = zero;
BigInteger q = zero;
BigInteger kprima = de/n;
var ks = new[] {kprima, kprima - one, kprima + one};
bool bfound = false;
foreach (BigInteger k in ks)
{
BigInteger fi = deminus1/k;
BigInteger pplusq = modulusplus1 - fi;
BigInteger delta = pplusq*pplusq - n*four;
BigInteger sqrt = delta.sqrt();
p = (pplusq + sqrt)/two;
if (n%p != zero) continue;
q = (pplusq - sqrt)/two;
bfound = true;
break;
}
if (bfound)
{
BigInteger dp = d%(p - one);
BigInteger dq = d%(q - one);
BigInteger inverseq = q.modInverse(p);
var pars = new RSAParameters
{
D = d.getBytes(),
DP = dp.getBytes(),
DQ = dq.getBytes(),
Exponent = e.getBytes(),
Modulus = n.getBytes(),
P = p.getBytes(),
Q = q.getBytes(),
InverseQ = inverseq.getBytes()
};
rsa.ImportParameters(pars);
return rsa;
}
throw new CryptographicException("Error generating the private key");
}
精彩评论