开发者

Trying to understand Java RSA key size

The key generator was initilized with a size of 1024, so why the printed sizes are 635 and 162?

import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;

public class TEST {

    public static KeyPair generateKeyPair() throws NoSuchAlgorithmException, NoSuchProviderException {
    KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA", "BC");
    keyPairGenerator.initialize(1024);
    return keyPairGenerator.generateKeyPair();
    }

    public static void main(String[] args) throws Exception {

    KeyPair keyPair = generateKeyPair();
    RSAPrivateKey privateKey = (RSAPrivateKey) ke开发者_Python百科yPair.getPrivate();
    RSAPublicKey publicKey = (RSAPublicKey) keyPair.getPublic();

    System.out.println("Size = " + privateKey.getEncoded().length);
    System.out.println("Size = " + publicKey.getEncoded().length);

    }

}


RSA keys are made of Modulus and Exponent. The key size refers to the bits in modulus. So even without any encoding overhead, you will need more than 128 bytes to store 1024-bit keys.

getEncoded() returns ASN.1 DER encoded objects. The private key even contains CRT parameters so it's very large.

To get key size, do something like this,

System.out.println("Key size = " + publicKey.getModulus().bitLength());

Here are the relevant ASN.1 objects,

RSAPrivateKey ::= SEQUENCE {
    version           Version,
    modulus           INTEGER,  -- n
    publicExponent    INTEGER,  -- e
    privateExponent   INTEGER,  -- d
    prime1            INTEGER,  -- p
    prime2            INTEGER,  -- q
    exponent1         INTEGER,  -- d mod (p-1)
    exponent2         INTEGER,  -- d mod (q-1)
    coefficient       INTEGER,  -- (inverse of q) mod p
    otherPrimeInfos   OtherPrimeInfos OPTIONAL
}


RSAPublicKey ::= SEQUENCE {
    modulus           INTEGER,  -- n
    publicExponent    INTEGER   -- e
}


First hint: 1024 bits = 128 bytes

Second hint: privateKey.getEncoded() returns an encoded representation (i.e. not raw).

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜