Interpolation and Morphing of an image in labview and/or openCV
I am working on an image manipulation problem. I have an overhead projector that projects onto a screen, and I have a camera that takes pictures of that. I can establish a 1:1 correspondence between a subset of projector coordinates and a subset of camera pixels by projecting dots on the screen and finding the centers of mass of the resulting regions on the camera. I thus have a map
proj_x, proj_y <--> cam_x, cam_y for scattered point pairs
My original plan was to regularize this map using the Mathscript function griddata. This would work fine in MATLAB, as follows
[pgridx, pgridy] = meshgrid(allprojxpts, allprojypts)
fitcx = griddata (proj_x, proj_y, cam_x, pgridx, pgridy);
fitcy = griddata (proj_x, proj_y, cam_y, pgridx, pgridy);
and the reverse for the camera to projector mapping
Unfortunately, this code causes Labview to run out of memory on the meshgrid step (the camera is 5 megapixels, which apparently is too much for labview to handle)
I then started looking through openCV, and found the cvRemap function. Unfortunately, this function takes as its starting point a regularized pixel-pixel map like the one I was trying to generate above. However, it made me hope that functions for creating such a map might be available in openCV. I couldn't find it in the openCV 1.0 API (I am stuck with 1.0 for legacy reasons), but I was hoping it's there or that someone has an easy trick.
So my question is one of the following
1) How can I interpolate from scattered points to a grid in openCV; (i.e., given z = f(x,y) for scattered values of x and y, how to fill an image with f(im_x, im_y) ?
2) How can I perform an image transform that maps image 1 to image 2, given that I know a scattered mapping of points in coordinate system 1 to coordinate system 2. This could be implemented either in Labview or OpenCV.
Note: I am tagging thi开发者_如何学编程s post delaunay, because that's one method of doing a scattered interpolation, but the better tag would be "scattered interpolation"
So this ends up being a specific fix for bugs in Labview 8.5. Nevertheless, since they're poorly documented, and I've spent a day of pain on them, I figure I'll post them so someone else googling this problem will come across it.
1) Meshgrid bombs. Don't know when this was fixed, definitely a bug in 8.5. Solution: use the meshgrid-like function on the interpolation&extrapolation pallet instead. Or upgrade to LV2009 which apparently works (thanks Underflow)
2) Griddata is defective in 8.5. This is badly documented. The 8.6 upgrade notes say that a problem with griddata and the "cubic" setting, but it is fact also a problem with the DEFAULT LINEAR setting. Solutions in descending order of kludginess: 1) pass 'v4' flag, which does some kind of spline interpolation, but does not have bugs. 2) upgrade to at least version 8.6. 3) Beat the ni engineers with reeds until they document bugs properly.
3) I was able to use the openCV remap function to do the actual transformation from one image to another. I tried just using the matlab built in interp2 vi, but it choked on large arrays and gave me out of memory errors. On the other hand, it is fairly straightforward to map an IMAQ image to an IPL image, so this isn't that bad, except for the addition of the outside library.
精彩评论