开发者

Repeat each row of data.frame the number of times specified in a column

df <- data.frame(var1 = c('a', 'b', 'c'), var2 = c('d', 'e', 'f'),
                 freq = 1:3)

What is the simplest way to expand each row the first two columns of the data.frame above, so that each row is repeated the number of times specified in the column 'freq'?

In other words, go from this:

df
  var1 var2 freq
1    a    d    1
2    b    e    2
3    c    f    3

To this:

df.expanded
  var1 var2
1    a    d
2    b    e
3    b    e
4    c    f
5    c 开发者_运维知识库   f
6    c    f


Here's one solution:

df.expanded <- df[rep(row.names(df), df$freq), 1:2]

Result:

    var1 var2
1      a    d
2      b    e
2.1    b    e
3      c    f
3.1    c    f
3.2    c    f


old question, new verb in tidyverse:

library(tidyr) # version >= 0.8.0
df <- data.frame(var1=c('a', 'b', 'c'), var2=c('d', 'e', 'f'), freq=1:3)
df %>% 
  uncount(freq)

    var1 var2
1      a    d
2      b    e
2.1    b    e
3      c    f
3.1    c    f
3.2    c    f


Use expandRows() from the splitstackshape package:

library(splitstackshape)
expandRows(df, "freq")

Simple syntax, very fast, works on data.frame or data.table.

Result:

    var1 var2
1      a    d
2      b    e
2.1    b    e
3      c    f
3.1    c    f
3.2    c    f


@neilfws's solution works great for data.frames, but not for data.tables since they lack the row.names property. This approach works for both:

df.expanded <- df[rep(seq(nrow(df)), df$freq), 1:2]

The code for data.table is a tad cleaner:

# convert to data.table by reference
setDT(df)
df.expanded <- df[rep(seq(.N), freq), !"freq"]


Another dplyr alternative with slice where we repeat each row number freq times

library(dplyr)

df %>%  
  slice(rep(seq_len(n()), freq)) %>% 
  select(-freq)

#  var1 var2
#1    a    d
#2    b    e
#3    b    e
#4    c    f
#5    c    f
#6    c    f

seq_len(n()) part can be replaced with any of the following.

df %>% slice(rep(1:nrow(df), freq)) %>% select(-freq)
#Or
df %>% slice(rep(row_number(), freq)) %>% select(-freq)
#Or
df %>% slice(rep(seq_len(nrow(.)), freq)) %>% select(-freq)


I know this is not the case but if you need to keep the original freq column, you can use another tidyverse approach together with rep:

library(purrr)

df <- data.frame(var1 = c('a', 'b', 'c'), var2 = c('d', 'e', 'f'), freq = 1:3)

df %>% 
  map_df(., rep, .$freq)
#> # A tibble: 6 x 3
#>   var1  var2   freq
#>   <fct> <fct> <int>
#> 1 a     d         1
#> 2 b     e         2
#> 3 b     e         2
#> 4 c     f         3
#> 5 c     f         3
#> 6 c     f         3

Created on 2019-12-21 by the reprex package (v0.3.0)


In case you have to do this operation on very large data.frames I would recommend converting it into a data.table and use the following, which should run much faster:

library(data.table)
dt <- data.table(df)
dt.expanded <- dt[ ,list(freq=rep(1,freq)),by=c("var1","var2")]
dt.expanded[ ,freq := NULL]
dt.expanded

See how much faster this solution is:

df <- data.frame(var1=1:2e3, var2=1:2e3, freq=1:2e3)
system.time(df.exp <- df[rep(row.names(df), df$freq), 1:2])
##    user  system elapsed 
##    4.57    0.00    4.56
dt <- data.table(df)
system.time(dt.expanded <- dt[ ,list(freq=rep(1,freq)),by=c("var1","var2")])
##    user  system elapsed 
##    0.05    0.01    0.06


Another possibility is using tidyr::expand:

library(dplyr)
library(tidyr)

df %>% group_by_at(vars(-freq)) %>% expand(temp = 1:freq) %>% select(-temp)
#> # A tibble: 6 x 2
#> # Groups:   var1, var2 [3]
#>   var1  var2 
#>   <fct> <fct>
#> 1 a     d    
#> 2 b     e    
#> 3 b     e    
#> 4 c     f    
#> 5 c     f    
#> 6 c     f

One-liner version of vonjd's answer:

library(data.table)

setDT(df)[ ,list(freq=rep(1,freq)),by=c("var1","var2")][ ,freq := NULL][]
#>    var1 var2
#> 1:    a    d
#> 2:    b    e
#> 3:    b    e
#> 4:    c    f
#> 5:    c    f
#> 6:    c    f

Created on 2019-05-21 by the reprex package (v0.2.1)


in fact. use the methods of vector and index. we can also achieve the same result, and more easier to understand:

rawdata <- data.frame('time' = 1:3, 
           'x1' = 4:6,
           'x2' = 7:9,
           'x3' = 10:12)

rawdata[rep(1, time=2), ] %>% remove_rownames()
#  time x1 x2 x3
# 1    1  4  7 10
# 2    1  4  7 10



I am providing one more addition to this wonderful thread of nice answers! Use the tidyr package (included in tidyverse) for a one-liner solution:

df %>% tidyr::uncount(weights = freq)
0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜