C# Math class question
I need to calculate T开发者_开发技巧anh-1 in C#
(and Sinh-1 and Cosh-1)I did not found it in Math library.. Any suggestions ?
EDIT: Tanh not Tan !!
You need to derive them yourself using existing functions e.g. Math.sin
You might find this useful:
Secant Sec(X) = 1 / Cos(X)
Cosecant Cosec(X) = 1 / Sin(X)
Cotangent Cotan(X) = 1 / Tan(X)
Inverse Sine Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Cosine Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
Inverse Secant Arcsec(X) = 2 * Atn(1) - Atn(Sgn(X) / Sqr(X * X - 1))
Inverse Cosecant Arccosec(X) = Atn(Sgn(X) / Sqr(X * X - 1))
Inverse Cotangent Arccotan(X) = 2 * Atn(1) - Atn(X)
Hyperbolic Sine HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent HArccotan(X) = Log((X + 1) / (X - 1)) / 2
Logarithm to base N LogN(X) = Log(X) / Log(N)
To .NET-ify David Relihan's formulas:
public static class MathHelper
{
// Secant
public static double Sec(double x)
{
return 1/Math.Cos(x);
}
// Cosecant
public static double Cosec(double x)
{
return 1/Math.Sin(x);
}
// Cotangent
public static double Cotan(double x)
{
return 1/Math.Tan(x);
}
// Inverse Sine
public static double Arcsin(double x)
{
return Math.Atan(x / Math.Sqrt(-x * x + 1));
}
// Inverse Cosine
public static double Arccos(double x)
{
return Math.Atan(-x / Math.Sqrt(-x * x + 1)) + 2 * Math.Atan(1);
}
// Inverse Secant
public static double Arcsec(double x)
{
return 2 * Math.Atan(1) - Math.Atan(Math.Sign(x) / Math.Sqrt(x * x - 1));
}
// Inverse Cosecant
public static double Arccosec(double x)
{
return Math.Atan(Math.Sign(x) / Math.Sqrt(x * x - 1));
}
// Inverse Cotangent
public static double Arccotan(double x)
{
return 2 * Math.Atan(1) - Math.Atan(x);
}
// Hyperbolic Sine
public static double HSin(double x)
{
return (Math.Exp(x) - Math.Exp(-x)) / 2 ;
}
// Hyperbolic Cosine
public static double HCos(double x)
{
return (Math.Exp(x) + Math.Exp(-x)) / 2 ;
}
// Hyperbolic Tangent
public static double HTan(double x)
{
return (Math.Exp(x) - Math.Exp(-x)) / (Math.Exp(x) + Math.Exp(-x));
}
// Hyperbolic Secant
public static double HSec(double x)
{
return 2 / (Math.Exp(x) + Math.Exp(-x));
}
// Hyperbolic Cosecant
public static double HCosec(double x)
{
return 2 / (Math.Exp(x) - Math.Exp(-x));
}
// Hyperbolic Cotangent
public static double HCotan(double x)
{
return (Math.Exp(x) + Math.Exp(-x)) / (Math.Exp(x) - Math.Exp(-x));
}
// Inverse Hyperbolic Sine
public static double HArcsin(double x)
{
return Math.Log(x + Math.Sqrt(x * x + 1)) ;
}
// Inverse Hyperbolic Cosine
public static double HArccos(double x)
{
return Math.Log(x + Math.Sqrt(x * x - 1));
}
// Inverse Hyperbolic Tangent
public static double HArctan(double x)
{
return Math.Log((1 + x) / (1 - x)) / 2 ;
}
// Inverse Hyperbolic Secant
public static double HArcsec(double x)
{
return Math.Log((Math.Sqrt(-x * x + 1) + 1) / x);
}
// Inverse Hyperbolic Cosecant
public static double HArccosec(double x)
{
return Math.Log((Math.Sign(x) * Math.Sqrt(x * x + 1) + 1) / x) ;
}
// Inverse Hyperbolic Cotangent
public static double HArccotan(double x)
{
return Math.Log((x + 1) / (x - 1)) / 2;
}
// Logarithm to base N
public static double LogN(double x, double n)
{
return Math.Log(x) / Math.Log(n);
}
}
You need to define them yourself.
http://en.wikipedia.org/wiki/Hyperbolic_function#Inverse_functions_as_logarithms
-1 1 1 + x
tanh x = — ln —————
2 1 - x
-1 _______
sinh x = ln ( x + √ x² + 1 )
-1 _______
cosh x = ln ( x + √ x² - 1 )
There is also faster formula for computing tanh, requiring only one exp(), because tanh is related to logistic function:
tanh(x) = 2 / (1 + exp(-2 * x)) - 1
also
tanh(x) = 1 - 2 / (1 + exp(2 * x))
See: http://en.wikipedia.org/wiki/Logistic_function
精彩评论