开发者

Optimal two variable linear regression calculation

Problem

Am looking to apply the y = mx + b equation (where m is SLOPE, b is INTERCEPT) to a data set, which is retrieved as shown in the SQL code. The values from the (MySQL) query are:

SLOPE = 0.0276653965651912
INTERCEPT = -57.2338357550468

SQL Code

SELECT
  ((sum(t.YEAR) * sum(t.AMOUNT开发者_Python百科)) - (count(1) * sum(t.YEAR * t.AMOUNT))) /
  (power(sum(t.YEAR), 2) - count(1) * sum(power(t.YEAR, 2))) as SLOPE,

  ((sum( t.YEAR ) * sum( t.YEAR * t.AMOUNT )) -
  (sum( t.AMOUNT ) * sum(power(t.YEAR, 2)))) /
  (power(sum(t.YEAR), 2) - count(1) * sum(power(t.YEAR, 2))) as INTERCEPT,
FROM
(SELECT
  D.AMOUNT,
  Y.YEAR
FROM
  CITY C, STATION S, YEAR_REF Y, MONTH_REF M, DAILY D
WHERE
  -- For a specific city ...
  --
  C.ID = 8590 AND
  -- Find all the stations within a 15 unit radius ...
  --
  SQRT( POW( C.LATITUDE - S.LATITUDE, 2 ) + POW( C.LONGITUDE - S.LONGITUDE, 2 ) ) < 15 AND
  -- Gather all known years for that station ...
  --
  S.STATION_DISTRICT_ID = Y.STATION_DISTRICT_ID AND
  -- The data before 1900 is shaky; insufficient after 2009.
  --
  Y.YEAR BETWEEN 1900 AND 2009 AND
  -- Filtered by all known months ...
  --
  M.YEAR_REF_ID = Y.ID AND
  -- Whittled down by category ...
  --
  M.CATEGORY_ID = '001' AND
  -- Into the valid daily climate data.
  --
  M.ID = D.MONTH_REF_ID AND
  D.DAILY_FLAG_ID <> 'M'
  GROUP BY Y.YEAR
  ORDER BY Y.YEAR
) t

Question

The following results (to calculate the start and end points of the line) appear incorrect. Why are the results off by ~10 degrees (e.g., outliers skewing the data)?

(1900 * 0.0276653965651912) + (-57.2338357550468) = -4.66958228

(2009 * 0.0276653965651912) + (-57.2338357550468) = -1.65405406

(Note that the data no longer match the image; the code.)

I would have expected the 1900 result to be around 10 (not -4.67) and the 2009 result to be around 11.50 (not -1.65).

Related Sites

  • Least absolute deviations
  • Robust regression


Try to split up the function, you have miscalculated the parameters. Have a look here for reference.

I would do something like the following (please excuse the fact that I don't remember much about SQL syntax and temporary variables, so the code might actually be wrong):

SELECT

sum(t.YEAR) / count(1) AS avgX,

sum(t.AMOUNT) / count(1) AS avgY,

sum(t.AMOUNT*t.YEAR) / count(1) AS avgXY,

sum(power(t.YEAR, 2)) / count(1) AS avgXsq,

( avgXY - avgX * avgY ) / ( avgXsq - power(avgX, 2) )  as SLOPE,

avgY - SLOPE * avgX as INTERCEPT,


This has now been verified as correct:

SELECT
  ((sum(t.YEAR) * sum(t.AMOUNT)) - (count(1) * sum(t.YEAR * t.AMOUNT))) /
  (power(sum(t.YEAR), 2) - count(1) * sum(power(t.YEAR, 2))) as SLOPE,

  ((sum( t.YEAR ) * sum( t.YEAR * t.AMOUNT )) -
  (sum( t.AMOUNT ) * sum(power(t.YEAR, 2)))) /
  (power(sum(t.YEAR), 2) - count(1) * sum(power(t.YEAR, 2))) as INTERCEPT,

  ((avg(t.AMOUNT * t.YEAR)) - avg(t.AMOUNT) * avg(t.YEAR)) /
  (stddev( t.AMOUNT ) * stddev( t.YEAR )) as CORRELATION
FROM (
  SELECT
    AVG(D.AMOUNT) as AMOUNT,
    Y.YEAR as YEAR
  FROM
    CITY C,
    STATION S,
    YEAR_REF Y,
    MONTH_REF M,
    DAILY D
  WHERE
    C.ID = 8590 AND

    SQRT(
      POW( C.LATITUDE - S.LATITUDE, 2 ) +
      POW( C.LONGITUDE - S.LONGITUDE, 2 ) ) < 15 AND

    S.STATION_DISTRICT_ID = Y.STATION_DISTRICT_ID AND

    Y.YEAR BETWEEN 1900 AND 2009 AND

    M.YEAR_REF_ID = Y.ID AND

    M.CATEGORY_ID = '001' AND

    M.ID = D.MONTH_REF_ID AND
    D.DAILY_FLAG_ID <> 'M'
  GROUP BY
    Y.YEAR
) t

See the image for details on slope, intercept, and (Pearson's) correlation.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜