Diamond square algorithm
I'm trying to write the Diamond-Square algorithm in Java to generate a random map but can't figure out the implementation...
Anyone with some Java code (or other language) so i can check how the loop is made would 开发者_StackOverflow社区be greatly appreciated!
Thanks!
This is an interesting algorithm for generating values. Here is an implementation that I have created based on the explanation give at this page in the references from the wikipedia article. It will create "spherical values" (wrapped at all the edges). There are notes in the comments for how to change it to generate new values on the edges instead of wrapping (though the meaning of average for the edges isn't really correct in these cases).
//size of grid to generate, note this must be a
//value 2^n+1
final int DATA_SIZE = 9;
//an initial seed value for the corners of the data
final double SEED = 1000.0;
double[][] data = new double[DATA_SIZE][DATA_SIZE];
//seed the data
data[0][0] = data[0][DATA_SIZE-1] = data[DATA_SIZE-1][0] =
data[DATA_SIZE-1][DATA_SIZE-1] = SEED;
double h = 500.0;//the range (-h -> +h) for the average offset
Random r = new Random();//for the new value in range of h
//side length is distance of a single square side
//or distance of diagonal in diamond
for(int sideLength = DATA_SIZE-1;
//side length must be >= 2 so we always have
//a new value (if its 1 we overwrite existing values
//on the last iteration)
sideLength >= 2;
//each iteration we are looking at smaller squares
//diamonds, and we decrease the variation of the offset
sideLength /=2, h/= 2.0){
//half the length of the side of a square
//or distance from diamond center to one corner
//(just to make calcs below a little clearer)
int halfSide = sideLength/2;
//generate the new square values
for(int x=0;x<DATA_SIZE-1;x+=sideLength){
for(int y=0;y<DATA_SIZE-1;y+=sideLength){
//x, y is upper left corner of square
//calculate average of existing corners
double avg = data[x][y] + //top left
data[x+sideLength][y] +//top right
data[x][y+sideLength] + //lower left
data[x+sideLength][y+sideLength];//lower right
avg /= 4.0;
//center is average plus random offset
data[x+halfSide][y+halfSide] =
//We calculate random value in range of 2h
//and then subtract h so the end value is
//in the range (-h, +h)
avg + (r.nextDouble()*2*h) - h;
}
}
//generate the diamond values
//since the diamonds are staggered we only move x
//by half side
//NOTE: if the data shouldn't wrap then x < DATA_SIZE
//to generate the far edge values
for(int x=0;x<DATA_SIZE-1;x+=halfSide){
//and y is x offset by half a side, but moved by
//the full side length
//NOTE: if the data shouldn't wrap then y < DATA_SIZE
//to generate the far edge values
for(int y=(x+halfSide)%sideLength;y<DATA_SIZE-1;y+=sideLength){
//x, y is center of diamond
//note we must use mod and add DATA_SIZE for subtraction
//so that we can wrap around the array to find the corners
double avg =
data[(x-halfSide+DATA_SIZE)%DATA_SIZE][y] + //left of center
data[(x+halfSide)%DATA_SIZE][y] + //right of center
data[x][(y+halfSide)%DATA_SIZE] + //below center
data[x][(y-halfSide+DATA_SIZE)%DATA_SIZE]; //above center
avg /= 4.0;
//new value = average plus random offset
//We calculate random value in range of 2h
//and then subtract h so the end value is
//in the range (-h, +h)
avg = avg + (r.nextDouble()*2*h) - h;
//update value for center of diamond
data[x][y] = avg;
//wrap values on the edges, remove
//this and adjust loop condition above
//for non-wrapping values.
if(x == 0) data[DATA_SIZE-1][y] = avg;
if(y == 0) data[x][DATA_SIZE-1] = avg;
}
}
}
//print out the data
for(double[] row : data){
for(double d : row){
System.out.printf("%8.3f ", d);
}
System.out.println();
}
M. Jessup's answer seems to be slightly bugged. Where he had:
double avg = data[(x-halfSide+DATA_SIZE)%DATA_SIZE][y] + //left of center data[(x+halfSide)%DATA_SIZE][y] + //right of center data[x][(y+halfSide)%DATA_SIZE] + //below center data[x][(y-halfSide+DATA_SIZE)%DATA_SIZE]; //above center
It should instead read:
double avg = data[(x-halfSide+DATA_SIZE-1)%(DATA_SIZE-1)][y] + //left of center data[(x+halfSide)%(DATA_SIZE-1)][y] + //right of center data[x][(y+halfSide)%(DATA_SIZE-1)] + //below center data[x][(y-halfSide+DATA_SIZE-1)%(DATA_SIZE-1)]; //above center
Otherwise it reads from the wrong locations (which can be uninitialised).
For anyone looking, here is the algorithm provided by M. Jessup wrapped in a class that takes in a seed (to allow reproducing the results), a value for n to specify dimensions (dimensions are 2^n + 1), and exposes the results as a normalised array of floats. It also has the fix for the second part of the algorithm applied.
import java.util.Random;
public class DiamondSquare {
public float[][] data;
public int width;
public int height;
public DiamondSquare(long mseed, int n) {
//size of grid to generate, note this must be a
//value 2^n+1
int DATA_SIZE = (1 << n) + 1;
width = DATA_SIZE;
height = DATA_SIZE;
//an initial seed value for the corners of the data
final float SEED = 1000.0f;
data = new float[DATA_SIZE][DATA_SIZE];
//seed the data
data[0][0] = data[0][DATA_SIZE-1] = data[DATA_SIZE-1][0] =
data[DATA_SIZE-1][DATA_SIZE-1] = SEED;
float valmin = Float.MAX_VALUE;
float valmax = Float.MIN_VALUE;
float h = 500.0f;//the range (-h -> +h) for the average offset
Random r = new Random(mseed);//for the new value in range of h
//side length is distance of a single square side
//or distance of diagonal in diamond
for(int sideLength = DATA_SIZE-1;
//side length must be >= 2 so we always have
//a new value (if its 1 we overwrite existing values
//on the last iteration)
sideLength >= 2;
//each iteration we are looking at smaller squares
//diamonds, and we decrease the variation of the offset
sideLength /=2, h/= 2.0){
//half the length of the side of a square
//or distance from diamond center to one corner
//(just to make calcs below a little clearer)
int halfSide = sideLength/2;
//generate the new square values
for(int x=0;x<DATA_SIZE-1;x+=sideLength){
for(int y=0;y<DATA_SIZE-1;y+=sideLength){
//x, y is upper left corner of square
//calculate average of existing corners
float avg = data[x][y] + //top left
data[x+sideLength][y] +//top right
data[x][y+sideLength] + //lower left
data[x+sideLength][y+sideLength];//lower right
avg /= 4.0;
//center is average plus random offset
data[x+halfSide][y+halfSide] =
//We calculate random value in range of 2h
//and then subtract h so the end value is
//in the range (-h, +h)
avg + (r.nextFloat()*2*h) - h;
valmax = Math.max(valmax, data[x+halfSide][y+halfSide]);
valmin = Math.min(valmin, data[x+halfSide][y+halfSide]);
}
}
//generate the diamond values
//since the diamonds are staggered we only move x
//by half side
//NOTE: if the data shouldn't wrap then x < DATA_SIZE
//to generate the far edge values
for(int x=0;x<DATA_SIZE-1;x+=halfSide){
//and y is x offset by half a side, but moved by
//the full side length
//NOTE: if the data shouldn't wrap then y < DATA_SIZE
//to generate the far edge values
for(int y=(x+halfSide)%sideLength;y<DATA_SIZE-1;y+=sideLength){
//x, y is center of diamond
//note we must use mod and add DATA_SIZE for subtraction
//so that we can wrap around the array to find the corners
float avg =
data[(x-halfSide+DATA_SIZE-1)%(DATA_SIZE-1)][y] + //left of center
data[(x+halfSide)%(DATA_SIZE-1)][y] + //right of center
data[x][(y+halfSide)%(DATA_SIZE-1)] + //below center
data[x][(y-halfSide+DATA_SIZE-1)%(DATA_SIZE-1)]; //above center
avg /= 4.0;
//new value = average plus random offset
//We calculate random value in range of 2h
//and then subtract h so the end value is
//in the range (-h, +h)
avg = avg + (r.nextFloat()*2*h) - h;
//update value for center of diamond
data[x][y] = avg;
valmax = Math.max(valmax, avg);
valmin = Math.min(valmin, avg);
//wrap values on the edges, remove
//this and adjust loop condition above
//for non-wrapping values.
if(x == 0) data[DATA_SIZE-1][y] = avg;
if(y == 0) data[x][DATA_SIZE-1] = avg;
}
}
}
for(int i=0; i<width; i++) {
for(int j=0; j<height; j++) {
data[i][j] = (data[i][j] - valmin) / (valmax - valmin);
}
}
}
}
精彩评论