How to differentiate between datatypes of columns of dataframe and validate them?
Here in for loop I have tried to get col 1 by 1 and
开发者_如何学运维if its data type is integer - passed to validate the data by calling is_Datanumeric function
else any else data type(string) - passed to valdate the data by calling isDataaplha function
def is_Data_alpha(ch): if ch.rlike(obj['char_exp']): return 0 else: return obj['in_valid'] def is_Data_numeric(ch): if ch.isNotNull(): return 0 else: return obj['in_valid'] for x in df1.columns: if dict(df1.dtypes)[x] == 'int': re = is_Data_numeric(x) print(re) else: re = is_Data_alpha(x) print(re)
But got an error :
Traceback (most recent call last):
File "/home/zmo-ubt-preetim-01/PycharmProjects/pythonProject/script1.py", line 41, in <module>
re = is_Data_numeric(x)
File "/home/zmo-ubt-preetim-01/PycharmProjects/pythonProject/script1.py", line 32, in is_Data_numeric
if ch.isNotNull():
AttributeError: 'str' object has no attribute 'isNotNull'
sys:1: ResourceWarning: unclosed file <_io.TextIOWrapper name='inputVariables.json' mode='r' encoding='UTF-8'>
I want to validate data by their data types.
精彩评论