Examples of simple stats calculation with hadoop
I want to extend an existing clustering algorithm to cope with very large data sets and have redesigned it in such a way that it is now computable with partitions of data, whi开发者_开发技巧ch opens the door to parallel processing. I have been looking at Hadoop and Pig and I figured that a good practical place to start was to compute basic stats on my data, i.e. arithmetic mean and variance.
I've been googling for a while, but maybe I'm not using the right keywords and I haven't really found anything which is a good primer for doing this sort of calculation, so I thought I would ask here.
Can anyone point me to some good samples of how to calculate mean and variance using hadoop, and/or provide some sample code.
Thanks
Pig latin has an associated library of reusable code called PiggyBank that has numerous handy functions. Unfortunately it didn't have variance last time I checked, but maybe that has changed. If nothing else, it might provide examples to get you started on your own implementation.
I should note that variance is difficult to implement in a stable way over huge data sets, so take care!
You might double check and see if your clustering code can drop into Cascading. Its quite trivial to add new functions, do joins, etc with your existing java libraries.
http://www.cascading.org/
And if you are into Clojure, you might watch these github projects: http://github.com/clj-sys
They are layering new algorithms implemented in Clojure over Cascading (which in turn is layered over Hadoop MapReduce).
精彩评论