MATLAB pdist function
I am using the pdist command to find the distance between x and y coordinates stored in a matrix.
X = [100 100;
0 100;
100 0;
500 400;
300 600;];
D = pdist(X,'euclidean')
Which returns a 15 element vector. :
[0.734979755525412 3.40039811339820 2.93175207511321 1.83879677592575 2.40127440268306 2.7525151开发者_开发知识库3299386 2.21488402640753 1.10610649500317 1.81674017301699 0.903207751535635 1.99116952754924 1.05069952386082 1.24122819418333 1.08583377275532 1.38729428638035]
Is there a way to associate these distances with the coordinates they were derived from, i.e. store them in a matrix with the general row form:
[Length xcoordinate1 ycoordinate1 xcoordinate2 ycoordinate2]
Where there is a row for each length found?
Thanks in advance
MATLAB has an inbuilt command called "squareform" that converts a pdist output to an n x n distance matrix http://www.kxcad.net/cae_MATLAB/toolbox/stats/pdist.html
%# define X, D
X = [100 100;
0 100;
100 0;
500 400;
300 600;];
D = squareform(pdist(X,'euclidean'));
%# define X, D
X = [100 100;
0 100;
100 0;
500 400;
300 600;];
D = pdist(X,'euclidean');
%# find the indices corresponding to each distance
tmp = ones(size(X,1));
tmp = tril(tmp,-1); %# creates a matrix that has 1's below the diagonal
%# get the indices of the 1's
[rowIdx,colIdx ] = find(tmp);
%# create the output
out = [D',X(rowIdx,:),X(colIdx,:)];
You can use the function NCHOOSEK to generate a set of indices into X
and build your matrix in the following way:
>> X = [100 100; 0 100; 100 0; 500 400; 300 600]; %# Your sample data
>> D = pdist(X,'euclidean')' %'# Euclidean distance, with result transposed
D =
100.0000 %# Note that I get different results than your example!
100.0000
500.0000
538.5165
141.4214
583.0952
583.0952
565.6854
632.4555
282.8427
>> index = nchoosek(1:size(X,1),2);
>> M = [D X(index(:,1),:) X(index(:,2),:)] %# [Distance X1 Y1 X2 Y2]
M =
100.0000 100.0000 100.0000 0 100.0000
100.0000 100.0000 100.0000 100.0000 0
500.0000 100.0000 100.0000 500.0000 400.0000
538.5165 100.0000 100.0000 300.0000 600.0000
141.4214 0 100.0000 100.0000 0
583.0952 0 100.0000 500.0000 400.0000
583.0952 0 100.0000 300.0000 600.0000
565.6854 100.0000 0 500.0000 400.0000
632.4555 100.0000 0 300.0000 600.0000
282.8427 500.0000 400.0000 300.0000 600.0000
Note that the function NCHOOSEK will only be a practical solution if the number of columns in X
is less than around 15.
edit: since pdist
selects pairs of points, the seconds argument to nchoosek
should simply be 2
. It is independent of the dimensionality of your data. This also makes the note on the preceding line obsolete. (sorry for the edit this way, not enough rep to add a comment, but I really liked this answer and wanted to fix it) -- Paul
精彩评论