Why are side-effects modeled as monads in Haskell?
Could anyone give some pointers on why the impure开发者_如何学JAVA computations in Haskell are modelled as monads?
I mean monad is just an interface with 4 operations, so what was the reasoning to modelling side-effects in it?
Suppose a function has side effects. If we take all the effects it produces as the input and output parameters, then the function is pure to the outside world.
So, for an impure function
f' :: Int -> Int
we add the RealWorld to the consideration
f :: Int -> RealWorld -> (Int, RealWorld)
-- input some states of the whole world,
-- modify the whole world because of the side effects,
-- then return the new world.
then f
is pure again. We define a parametrized data type type IO a = RealWorld -> (a, RealWorld)
, so we don't need to type RealWorld so many times, and can just write
f :: Int -> IO Int
To the programmer, handling a RealWorld directly is too dangerous—in particular, if a programmer gets their hands on a value of type RealWorld, they might try to copy it, which is basically impossible. (Think of trying to copy the entire filesystem, for example. Where would you put it?) Therefore, our definition of IO encapsulates the states of the whole world as well.
Composition of "impure" functions
These impure functions are useless if we can't chain them together. Consider
getLine :: IO String ~ RealWorld -> (String, RealWorld)
getContents :: String -> IO String ~ String -> RealWorld -> (String, RealWorld)
putStrLn :: String -> IO () ~ String -> RealWorld -> ((), RealWorld)
We want to
- get a filename from the console,
- read that file, and
- print that file's contents to the console.
How would we do it if we could access the real world states?
printFile :: RealWorld -> ((), RealWorld)
printFile world0 = let (filename, world1) = getLine world0
(contents, world2) = (getContents filename) world1
in (putStrLn contents) world2 -- results in ((), world3)
We see a pattern here. The functions are called like this:
...
(<result-of-f>, worldY) = f worldX
(<result-of-g>, worldZ) = g <result-of-f> worldY
...
So we could define an operator ~~~
to bind them:
(~~~) :: (IO b) -> (b -> IO c) -> IO c
(~~~) :: (RealWorld -> (b, RealWorld))
-> (b -> RealWorld -> (c, RealWorld))
-> (RealWorld -> (c, RealWorld))
(f ~~~ g) worldX = let (resF, worldY) = f worldX
in g resF worldY
then we could simply write
printFile = getLine ~~~ getContents ~~~ putStrLn
without touching the real world.
"Impurification"
Now suppose we want to make the file content uppercase as well. Uppercasing is a pure function
upperCase :: String -> String
But to make it into the real world, it has to return an IO String
. It is easy to lift such a function:
impureUpperCase :: String -> RealWorld -> (String, RealWorld)
impureUpperCase str world = (upperCase str, world)
This can be generalized:
impurify :: a -> IO a
impurify :: a -> RealWorld -> (a, RealWorld)
impurify a world = (a, world)
so that impureUpperCase = impurify . upperCase
, and we can write
printUpperCaseFile =
getLine ~~~ getContents ~~~ (impurify . upperCase) ~~~ putStrLn
(Note: Normally we write getLine ~~~ getContents ~~~ (putStrLn . upperCase)
)
We were working with monads all along
Now let's see what we've done:
- We defined an operator
(~~~) :: IO b -> (b -> IO c) -> IO c
which chains two impure functions together - We defined a function
impurify :: a -> IO a
which converts a pure value to impure.
Now we make the identification (>>=) = (~~~)
and return = impurify
, and see? We've got a monad.
Technical note
To ensure it's really a monad, there's still a few axioms which need to be checked too:
return a >>= f = f a
impurify a = (\world -> (a, world)) (impurify a ~~~ f) worldX = let (resF, worldY) = (\world -> (a, world )) worldX in f resF worldY = let (resF, worldY) = (a, worldX) in f resF worldY = f a worldX
f >>= return = f
(f ~~~ impurify) worldX = let (resF, worldY) = f worldX in impurify resF worldY = let (resF, worldY) = f worldX in (resF, worldY) = f worldX
f >>= (\x -> g x >>= h) = (f >>= g) >>= h
Left as exercise.
Could anyone give some pointers on why the unpure computations in Haskell are modeled as monads?
This question contains a widespread misunderstanding.
Impurity and Monad are independent notions.
Impurity is not modeled by Monad.
Rather, there are a few data types, such as IO
, that represent imperative computation.
And for some of those types, a tiny fraction of their interface corresponds to the interface pattern called "Monad".
Moreover, there is no known pure/functional/denotative explanation of IO
(and there is unlikely to be one, considering the "sin bin" purpose of IO
), though there is the commonly told story about World -> (a, World)
being the meaning of IO a
.
That story cannot truthfully describe IO
, because IO
supports concurrency and nondeterminism.
The story doesn't even work when for deterministic computations that allow mid-computation interaction with the world.
For more explanation, see this answer.
Edit: On re-reading the question, I don't think my answer is quite on track. Models of imperative computation do often turn out to be monads, just as the question said. The asker might not really assume that monadness in any way enables the modeling of imperative computation.
As I understand it, someone called Eugenio Moggi first noticed that a previously obscure mathematical construct called a "monad" could be used to model side effects in computer languages, and hence specify their semantics using Lambda calculus. When Haskell was being developed there were various ways in which impure computations were modelled (see Simon Peyton Jones' "hair shirt" paper for more details), but when Phil Wadler introduced monads it rapidly became obvious that this was The Answer. And the rest is history.
Could anyone give some pointers on why the unpure computations in Haskell are modeled as monads?
Well, because Haskell is pure. You need a mathematical concept to distinguish between unpure computations and pure ones on type-level and to model programm flows in respectively.
This means you'll have to end up with some type IO a
that models an unpure computation. Then you need to know ways of combining these computations of which apply in sequence (>>=
) and lift a value (return
) are the most obvious and basic ones.
With these two, you've already defined a monad (without even thinking of it);)
In addition, monads provide very general and powerful abstractions, so many kinds of control flow can be conveniently generalized in monadic functions like sequence
, liftM
or special syntax, making unpureness not such a special case.
See monads in functional programming and uniqueness typing (the only alternative I know) for more information.
As you say, Monad
is a very simple structure. One half of the answer is: Monad
is the simplest structure that we could possibly give to side-effecting functions and be able to use them. With Monad
we can do two things: we can treat a pure value as a side-effecting value (return
), and we can apply a side-effecting function to a side-effecting value to get a new side-effecting value (>>=
). Losing the ability to do either of these things would be crippling, so our side-effecting type needs to be "at least" Monad
, and it turns out Monad
is enough to implement everything we've needed to so far.
The other half is: what's the most detailed structure we could give to "possible side effects"? We can certainly think about the space of all possible side effects as a set (the only operation that requires is membership). We can combine two side effects by doing them one after another, and this will give rise to a different side effect (or possibly the same one - if the first was "shutdown computer" and the second was "write file", then the result of composing these is just "shutdown computer").
Ok, so what can we say about this operation? It's associative; that is, if we combine three side effects, it doesn't matter which order we do the combining in. If we do (write file then read socket) then shutdown computer, it's the same as doing write file then (read socket then shutdown computer). But it's not commutative: ("write file" then "delete file") is a different side effect from ("delete file" then "write file"). And we have an identity: the special side effect "no side effects" works ("no side effects" then "delete file" is the same side effect as just "delete file") At this point any mathematician is thinking "Group!" But groups have inverses, and there's no way to invert a side effect in general; "delete file" is irreversible. So the structure we have left is that of a monoid, which means our side-effecting functions should be monads.
Is there a more complex structure? Sure! We could divide possible side effects into filesystem-based effects, network-based effects and more, and we could come up with more elaborate rules of composition that preserved these details. But again it comes down to: Monad
is very simple, and yet powerful enough to express most of the properties we care about. (In particular, associativity and the other axioms let us test our application in small pieces, with confidence that the side effects of the combined application will be the same as the combination of the side effects of the pieces).
It's actually quite a clean way to think of I/O in a functional way.
In most programming languages, you do input/output operations. In Haskell, imagine writing code not to do the operations, but to generate a list of the operations that you would like to do.
Monads are just pretty syntax for exactly that.
If you want to know why monads as opposed to something else, I guess the answer is that they're the best functional way to represent I/O that people could think of when they were making Haskell.
AFAIK, the reason is to be able to include side effects checks in the type system. If you want to know more, listen to those SE-Radio episodes: Episode 108: Simon Peyton Jones on Functional Programming and Haskell Episode 72: Erik Meijer on LINQ
Above there are very good detailed answers with theoretical background. But I want to give my view on IO monad. I am not experienced haskell programmer, so May be it is quite naive or even wrong. But i helped me to deal with IO monad to some extent (note, that it do not relates to other monads).
First I want to say, that example with "real world" is not too clear for me as we cannot access its (real world) previous states. May be it do not relates to monad computations at all but it is desired in the sense of referential transparency, which is generally presents in haskell code.
So we want our language (haskell) to be pure. But we need input/output operations as without them our program cannot be useful. And those operations cannot be pure by their nature. So the only way to deal with this we have to separate impure operations from the rest of code.
Here monad comes. Actually, I am not sure, that there cannot exist other construct with similar needed properties, but the point is that monad have these properties, so it can be used (and it is used successfully). The main property is that we cannot escape from it. Monad interface do not have operations to get rid of the monad around our value. Other (not IO) monads provide such operations and allow pattern matching (e.g. Maybe), but those operations are not in monad interface. Another required property is ability to chain operations.
If we think about what we need in terms of type system, we come to the fact that we need type with constructor, which can be wrapped around any vale. Constructor must be private, as we prohibit escaping from it(i.e. pattern matching). But we need function to put value into this constructor (here return comes to mind). And we need the way to chain operations. If we think about it for some time, we will come to the fact, that chaining operation must have type as >>= has. So, we come to something very similar to monad. I think, if we now analyze possible contradictory situations with this construct, we will come to monad axioms.
Note, that developed construct do not have anything in common with impurity. It only have properties, which we wished to have to be able to deal with impure operations, namely, no-escaping, chaining, and a way to get in.
Now some set of impure operations is predefined by the language within this selected monad IO. We can combine those operations to create new unpure operations. And all those operations will have to have IO in their type. Note however, that presence of IO in type of some function do not make this function impure. But as I understand, it is bad idea to write pure functions with IO in their type, as it was initially our idea to separate pure and impure functions.
Finally, I want to say, that monad do not turn impure operations into pure ones. It only allows to separate them effectively. (I repeat, that it is only my understanding)
精彩评论