Error in plotting SVM classification graph
I'm using the support vector machine from the e1071
package to classify my data and want to visualize how the machine actually does the classification. However, when using the plot.svm
function, I get an error that I can't resolve.
Script:
library("e1071")
开发者_JS百科
data <-read.table("2010223_11042_complete")
names(data) <- c("Class","V1", "V2")
model <- svm(Class~.,data, type = "C-classification", kernel = "linear")
plot(model,data,fill=TRUE, grid=200, svSymbol=4, dataSymbol=1, color.palette=terrain.colors)
Output:
plot(model,data,fill=TRUE, grid=200, svSymbol=4, dataSymbol=1, color.palette=terrain.colors)
Error in rect(0, levels[-length(levels)], 1, levels[-1L], col = col) :
cannot mix zero-length and non-zero-length coordinates
Traceback:
traceback()
4: rect(0, levels[-length(levels)], 1, levels[-1L], col = col)
3: filled.contour(xr, yr, matrix(as.numeric(preds), nr = length(xr),
byrow = TRUE), plot.axes = {
axis(1)
axis(2)
colind <- as.numeric(model.response(model.frame(x, data)))
dat1 <- data[-x$index, ]
dat2 <- data[x$index, ]
coltmp1 <- symbolPalette[colind[-x$index]]
coltmp2 <- symbolPalette[colind[x$index]]
points(formula, data = dat1, pch = dataSymbol, col = coltmp1)
points(formula, data = dat2, pch = svSymbol, col = coltmp2)
}, levels = 1:(length(levels(preds)) + 1), key.axes = axis(4,
1:(length(levels(preds))) + 0.5, labels = levels(preds),
las = 3), plot.title = title(main = "SVM classification plot",
xlab = names(lis)[2], ylab = names(lis)[1]), ...)
2: plot.svm(model, data, fill = TRUE, grid = 200, svSymbol = 4,
dataSymbol = 1, color.palette = terrain.colors)
1: plot(model, data, fill = TRUE, grid = 200, svSymbol = 4,
dataSymbol = 1, color.palette = terrain.colors)
Part of my (4488 lines long) data file:
-1 0 23.532
+1 1 61.1157
+1 1 61.1157
+1 1 61.1157
-1 1 179.03
-1 0 17.0865
-1 0 27.6201
-1 0 17.0865
-1 0 27.6201
-1 1 89.6398
-1 0 42.7418
-1 1 89.6398
Since I`m just starting with R, I have no idea what this means and how I should deal with it, nor did I find anything useful in other places.
Without being sure what exactly causes the problem, I would try to transform the Class
column to a factor (so defining the type as C-classification
will no longer be necessary) using something like this:
data$Class <- as.factor(data$Class)
or in one step:
model <- svm(as.factor(Class)~.,data, kernel = "linear")
精彩评论